Dynamic Object Detection Architecture for LiDAR Embedded Processors

라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현

  • 정민우 (카네비컴 기술연구소) ;
  • 이상훈 (카네비컴 기술연구소) ;
  • 김대영 (대구가톨릭대학교 컴퓨터소프트웨어학부)
  • Received : 2020.11.12
  • Accepted : 2020.12.29
  • Published : 2020.12.30

Abstract

In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

자율주행 환경은 실시간으로 상황이 급변하기 때문에 동적 객체인식 알고리즘이 반드시 필요하다. 또한, 자율주행자동차에 내장된 센서와 제어모듈이 증가하면서 중앙제어장치의 부하가 급격히 증가하고 있다. 중앙제어장치의 부하를 줄이기 위해서 단일 센서에서 출력되는 데이터의 최적화가 필요하다. 본 연구는 라이다에 탑재된 임베디드 프로세서를 기반으로 한 동적 객체인식 알고리즘을 제안한다. 라이다에서 출력되는 포인트클라우드 기반 객체인식을 위한 오픈소스들이 존재하지만, 대부분 고성능 프로세서를 요구한다. 라이다에 탑재된 임베디드 프로세서는 리소스 제약 때문에 기능 구현을 위한 최적화 된 아케텍처가 반드시 필요하다. 본 연구에서는 자율주행자동차를 위한 라이다 임베디드 프로세서 기반 동적 객체인식 아키텍처를 설계하고, 포인트클라우드 크기와 객체인식 처리 지연시간의 상관관계를 분석하였다. 제안하는 객체인식 아키텍처는 포인트클라우드 크기가 증가함에 따라 객체인식 처리 지연시간이 증가하였고, 특정한 지점에서 프로세서의 과부하가 발생하여 포인트를 처리하지 못하는 현상이 발생하였다.

Keywords

Acknowledgement

이 연구는 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No.2018R1D1A1B07041296).

References

  1. Thakran, Y. Toshniwal, D. "Unsupervised outlier detection in streaming data using weighted clustering," In Proc. of the International Conference on Intelligent Systems Design & Applications(ISDA), Kochi, India, 2012, pp. 27-29.
  2. Schall, O. Belyaev, A. Seidel, H.P. "Robust filtering of noisy scattered point data," In Proceedings of the Eurographics/IEEE Vgtc Conference on Point-Based Graphics(PBG), NY, USA, 21-22 June 2005; pp. 71-77.
  3. Zaman, F. Wong, Y.P. Ng, B.Y. "Density-based denoising of point cloud," In Proc. of the 9th International Conference on Robotic, Vision, Signal, Processing and Power Applications(RVSPPA), Springer, Singapore, 2017.
  4. Huang, D. Du, S. Li, G. Zhao, C. Deng, Y. "Detection and monitoring of defects on three-dimensional curved surfaces based on high-density point cloud data," Precision Engineering., Vol. 52, pp. 79-95, 2018. https://doi.org/10.1016/j.precisioneng.2018.03.001
  5. Narvaez, E.A.L. Narvaez, N.E.L. "Point cloud denoising using robust principal component analysis," In Proceedings of the First International Conference on Computer Graphics Theory and Applications(GRAPP), Setubal, Portugal, 2006, pp. 25-28.
  6. Zhu, H. Zhang, J.;Wang, Z. "Arterial spin labeling perfusion MRI signal denoising using robust principal component analysis," J Neurosci Methods, 2017, 295, 10-19. https://doi.org/10.1016/j.jneumeth.2017.11.017
  7. Mahmoud, S. M. Lotfi, A. Langensiepen, C. "User activities outlier detection system using principal component analysis and fuzzy rule-based system," In Proc of the International Conference on Pervasive Technologies Related to Assistive Environments(PTRAE), Crete, Greece, 2012, pp. 1-8.
  8. Bentley, J.L. "Multidimensional Divide and Conquer," Communication. ACM, Vol. 23, No. 4, pp. 214-229, 1980. https://doi.org/10.1145/358841.358850
  9. Friedman, J.H. Bentley, J.L. Finkel, R.A. "An Algorithm for Finding Best Matches in Logarithmic Expected Time," ACM Trans. Math. Software. Vol. 3, No. 3, pp. 209-226, 1977. https://doi.org/10.1145/355744.355745
  10. Moore, A. "Very Fast EM-Based Mixture Model Clustering Using Multiresolution Kd-trees," In Proc. Advances in Neural Information Processing Systems II (NIPS), MA, USA, 1999, pp. 543- 549.
  11. Han, S.; Kim, S.; Hoon Jung, J.; Kim, C.; Yu, K.; Heo, J. "Development of a hashing-based data structure for the fast retrieval of 3D terrestrial laser scanned data," Comput. Geosci, Vol. 39, pp. 1-10, Feb, 2012. https://doi.org/10.1016/j.cageo.2011.05.005
  12. Han, S.-H.; Lee, S.-J.; Kim, S.-P.; Kim, C.-J.; Heo, J.; Lee, H.-B. A Comparison of 3D R-tree and Octree to Index Large Point Clouds from a 3D Terrestrial Laser Scanner. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2011, 29, 39-46. https://doi.org/10.7848/ksgpc.2011.29.1.39
  13. Vosselman, G. Dijkman, S. "3D building model reconstruction from point clouds and ground plans," Int. Arch.Photogramm. Remote Sens, Vol. 34, pp. 37-44, 2001.
  14. Overby, J. Bodum, L. Kjems, E.B. Ilsoe, P.M. "Automatic 3D Building Reconstruction from Airborne Laser Scanning and Cadastral Data Using Hough Transform," Int. Arch. Photogramm. Remote Sens. Vol. 35, pp. 296-301, 2004.
  15. Borrmann, D. Elseberg, J. Lingemann, K. Nuchter, A. "The 3d hough transform for plane detection in point clouds: A review and a new accumulator design" 3D Res. Vol. 2, No. 3, Jan, 2011.
  16. Anagnostopoulos, I. Patraucean, V. Brilakis, I. Vela, P. "Detection of walls, floors and ceilings in point cloud data," In Proc. Constr. Res. Congr, San Juan, Puerto Rico, 2016, pp. 2302-2311.
  17. Schnabel, R. Wahl, R. Klein, R. "Efficient RANSAC for point-cloud shape detection," Comput. Graph. Forum,Vol. 26, No. 2, pp. 214-226, Jun, 2007. https://doi.org/10.1111/j.1467-8659.2007.01016.x