• Title/Summary/Keyword: Li dendrite

Search Result 30, Processing Time 0.029 seconds

UV-cured Polymer Solid Electrolyte Reinforced using a Ceramic-Polymer Composite Layer for Stable Solid-State Li Metal Batteries

  • Hye Min Choi;Su Jin Jun;Jinhong Lee;Myung-Hyun Ryu;Hyeyoung Shin;Kyu-Nam Jung
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.85-95
    • /
    • 2023
  • In recent years, solid-state Li metal batteries (SSLBs) have attracted significant attention as the next-generation batteries with high energy and power densities. However, uncontrolled dendrite growth and the resulting pulverization of Li during repeated plating/stripping processes must be addressed for practical applications. Herein, we report a plastic-crystal-based polymer/ceramic composite solid electrolyte (PCCE) to resolve these issues. To fabricate the one-side ceramic-incorporated PCCE (CI-PCCE) film, a mixed precursor solution comprising plastic-crystal-based polymer (succinonitrile, SN) with garnet-structured ceramic (Li7La3Zr2O12, LLZO) particles was infused into a thin cellulose membrane, which was used as a mechanical framework, and subsequently solidified by using UV-irradiation. The CI-PCCE exhibited good flexibility and a high room-temperature ionic conductivity of over 10-3 S cm-1. The Li symmetric cell assembled with CI-PCCE provided enhanced durability against Li dendrite penetration through the solid electrolyte (SE) layer than those with LLZO-free PCCEs and exhibited long-term cycling stability (over 200 h) for Li plating/stripping. The enhanced Li+ transference number and lower interfacial resistance of CI-PCCE indicate that the ceramic-polymer composite layer in contact with the Li anode enabled the uniform distribution of Li+ flux at the interface between the Li metal and CI-PCCE, thereby promoting uniform Li plating/stripping. Consequently, the Li//LiFePO4 (LFP) full cell constructed with CI-PCCE demonstrated superior rate capability (~120 mAh g-1 at 2 C) and stable cycle performance (80% after 100 cycles) than those with ceramic-free PCCE.

Recent Progress of Alloy-Based All-Solid-State Li-Ion Battery Anodes (전고체 리튬 이차전지용 합금계 음극 소재의 연구 동향)

  • Jeong-Myeong Yoon;Cheol-Min Park
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.466-477
    • /
    • 2023
  • The increasing demand for high-performance energy storage systems has highlighted the limitations of conventional Li-ion batteries (LIBs), particularly regarding safety and energy density. All-solid-state batteries (ASSBs) have emerged as a promising next-generation energy storage system, offering the potential to address these issues. By employing nonflammable solid electrolytes and utilizing high-capacity electrode materials, ASSBs have demonstrated improved safety and energy density. Automotive and energy storage industries, in particular, have recognized the significance of advancing ASSB technology. Although the use of Li metal as ASSB anode is promising due to its high theoretical capacity and the expectation that Li dendrites will not form in solid electrolytes, persistent problems with Li dendrite formation during cycling remain. Therefore, the exploration of novel high-performance anode materials for ASSBs is highly important. Recent research has focused extensively on alloy-based anodes for ASSBs, owing to their advantages of no dendrite formation and high-energy density. This study provides a comprehensive review of the latest advancements and challenges associated with alloy-based anodes for ASSBs.

Microstructural analysis of coal bottom ash-${Na_2}O-{Li_2O}$ system glass-ceramics (석탄 바닥재-${Na_2}O-{Li_2O}$계 결정화 유리의 미세구조 분석)

  • Kang, Seung-Gu
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2009
  • The glass-ceramics composed of coal bottom ash produced from a thermal power plant, $Na_{2}O$ and $Li_{2}O$ as a flux agent and $TiO_2$ as a nucleation agent were fabricated and its microstructures were analyzed. The nepheline was a major crystal phase in the glass-ceramics fabricated and its amount increased with $TiO_2$ addition. The glass-ceramics without $TiO_2$ addition had the thick surface crystals induced by a surface-crystallization mechanism and no crystal in the interior matrix. The surface crystallization, however, was restrained and the interior matrix was completely crystallized showing dendrite shape spread with fine particles < $1{\mu}m$ when added with $TiO_2$ above 4 wt%. For the glass-ceramics containing 6 wt% $TiO_2$, the $5{\mu}m$-long dendrite crystal; were interlocked each other which could suppress the crack propagation effectively at the external loading applied.

Preparation and Characterization of Sulfonated Poly (Arylene Ether Sulfone) Random Copolymer-Polyolefin Pore-filling Separators with Metal Ion Trap Capability for Li-ion Secondary Battery (리튬이온 이차전지용 금속이온 선택성 술폰화 폴리아릴렌에테르술폰 공중합체-폴리올레핀 함침격리막 제조 및 특성)

  • Jeong, Yeon Tae;Ahn, Juhee;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.4
    • /
    • pp.310-317
    • /
    • 2016
  • Lithium ion secondary battery (LISB) is an energy conversion system operated via charging-discharging cycle based on Lithium ion migration. LISB has a lot of advantages such as high energy density, low self-discharge rate, and a relatively high lifetime. Recently, increasing demands of electric vehicles have been encouraging the development of LISB with high capacity. Unfortunately, it causes some critical safety issues. It includes dendrite formation on negative electrode, resulting in electric shortage problems and battery explosion. Also, the elevated temperatures occurred during the LISB operation induces thermal shrinkage of polyolefin (e.g., polyethylene and polypropylene) separators. Consequently, the low thermal stability leads to decay of LISB performances and the reduction of lifetime. In this study, sulfonated poly (arylene ether sulfone) (SPAES) random copolymers were used as key materials to prepare polyolefin pore-filling separator. The resulting separators were evaluated in the term of metal ion chelation capability associated with dendrite formation, $Li^+$ ion conductivity and thermal durability.

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB) (PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상)

  • Lee, Sanghyun;Seok, Dohyeong;Jeong, Yohan;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.38-45
    • /
    • 2020
  • Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode (리튬금속전극의 덴드라이트 성장 억제 방안의 연구 동향)

  • Kim, Yerang;Park, Jihye;Hwang, Yujin;Jung, Cheolsoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.2
    • /
    • pp.51-68
    • /
    • 2022
  • Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for dendrite growth inhibition on lithium metal electrode were classified into four types: flexible SEI (solid electrolyte interface) layer responding to volume expansion of lithium metal electrode, SEI supporting layer to inhibit dendrite growth physically, SHES (self-healing electrostatic shield) mechanism to adjust lithium growth by leading uniform diffusion of Li+ ions, and finally micro-patterning to induce uniform deposition of lithium. We hope to advance the practical use of lithium metal electrode by analyzing pros and cons of this classification.

Effects of UV irradiation on the crystalline phase with$Li_2O-Al_2O_3-SiO_2-K_2O$system ($Li_2O-Al_2O_3-SiO_2-K_2O$ 계어서의 UV조사 시간에 따른 결정상 생성에 관한 연구)

  • 이명원;강원호
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.166-171
    • /
    • 1997
  • The photomachinable glass-ceramics of Ag and CeO$_{2}$ added to Li$_{2}$O-Al$_{2}$O$_{3}$-SiO$_{2}$-K$_{2}$O glass system was investigated as a function of UV irradiation time. The temperature of optimum nucleation and crystal growth temperature were confirmed at 525.deg. C, 630.deg. C respectively using DTA and TMA. The phases of Li$_{2}$O.SiO$_{2}$ habit were lath-like and/or dendrite type and [002] direction of Li$_{2}$O.SiO$_{2}$ / Li$_{2}$O.2SiO$_{2}$ phases were changed according to the UV irradiation time by 400 W, 362 nm UV light source. Under that condition, the optimum UV irradiation time was 5 min.

  • PDF

The Electrochemical Property Studies on Polyacenic Semiconductor Anode Material (음극 폴리아센 반도체 재료의 전기화학적 특성연구)

  • Kim Han-Joo;Park Jong-Eun;Son Won-Keun;Lee Hong-Ki;Park Soo-Gil;Lee Ju-Seong
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.3
    • /
    • pp.134-137
    • /
    • 1999
  • The polyacenic semiconductor material (PAS) electrode prepared by the pyrolytic treatment of phenol-formaldehyde resin is one of useful electrodes. As an anode material of lithium rechargeable batteries, amorphous carbon materials have been studied extensively because of their high electrochemcal performance and cyclicability. Carbon materials do not lead to the formation of lithium dendrite which is one of the most serious problems in applying Li-based materials to an electrode of batteries. The polyacene materials prepared from phenol resin at relatively low temperatures $(550\~750^{\circ}C)$ show a highly Li\doped state up to $C_2Li$ state without liberation of Li cluster. We prepared each polyacene materials at various temperature and investigated electro- chemical properties. We tried to change the mole ratio of [H]/[C] which is $0.24\~0.4$ range. Considering of electrochemical properties of PAS material, the PAS material is one of the most suitable materials for electrodes of a polymer battery.

Effect of Vinylene Carbonate as an Electrolyte Additive on the Electrochemical Properties of Micro-Patterned Lithium Metal Anode (미세 패턴화된 리튬금속 전극의 Vinylene Carbonate 첨가제 도입에 따른 전기화학 특성에 관한 연구)

  • Jin, Dahee;Park, Joonam;Dzakpasu, Cyril Bubu;Yoon, Byeolhee;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.69-78
    • /
    • 2019
  • Lithium metal anode with the highest theoretical capacity to replace graphite anodes are being reviewed. However, the dendrite growth during repeated oxidation/reduction reaction on lithium metal surface, which results in poor cycle performance and safety issue has hindered its successful implementation. In our previous work, we solved this problem by using surface modification technique whereby a surface pattern on lithium metal anode is introduced. Although the micro-patterned Lithium metal electrode is beneficial to control Li metal deposition efficiently, it is difficult to control the mossy-like Li granulation at high current density ($>2.0mA\;cm^{-2}$). In this study, we introduce vinylene carbonate (VC) electrolyte additive on micro patterned lithium metal anode to suppress the lithium dendrite growth. Owing to the synergetic effect of micro-patterned lithium metal anode and VC electrolyte additive, lithium dendrite at a high current density is dense. As a result, we confirmed that the cycle performance was further improved about 6 times as compared with the reference electrode.

Solidification Structure of Al-2.7wt%Li Alloys by Cooling Rate Controlled (냉각속도에 따른 Al-2.7wt%Li 합금계의 응고조직)

  • Shim, Deung-Seub;Choe, Jeong-Cheol;Cho, Hyung-Ho;Kwon, Hae-Wook
    • Journal of Korea Foundry Society
    • /
    • v.11 no.5
    • /
    • pp.398-405
    • /
    • 1991
  • Al-Li alloy has a high strength with low density. Practically this alloy should use by the material which made from the rapid solidification. Therefore we examine the solidification structures of alloy with cooling rate. According to cooling rate increased, grain size and secondary dendrite arm spacing were smaller. Also grain size was further smaller by Zr added. To obtain more fine solidification structure, rapid solidification by single roll melt spinning was performed. According to higher wheel speed, cooling rate increased and cell size was smaller. Because of locally different cooling rate, different cell size was obtained in same specimen. More than cooling rate $10^6^{\circ}C$ /sec, zone A(insensible zone to corrosion)was obtained.

  • PDF