Acknowledgement
This work was supported by the 2020 sabbatical year research grant of the University of Seoul.
References
- G. N. Lewis and F. G. Keyes, The potential of the lithium electrode, J. Am. Chem. Soc., 35(4), 340-344 (1913). https://doi.org/10.1021/ja02193a004
- M. V. Reddy, A. Mauger, C. M. Julien, A. Paolella, and K. Zaghib, Brief history of early lithium-battery development, Materials, 13(8), 1884 (2020). https://doi.org/10.3390/ma13081884
- A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun., 11(1), 1-9 (2020). https://doi.org/10.1038/s41467-019-13993-7
- C. A. Vincent, Lithium batteries: a 50-year perspective, 1959-2009, Solid State Ionics, 134(1-2), 159-167 (2000). https://doi.org/10.1016/S0167-2738(00)00723-2
- Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, and B. Guo, An overview on the advances of LiCoO2 cathodes for lithium-ion batteries, Adv. Energy Mater., 11(2), 2000982 (2021). https://doi.org/10.1002/aenm.202000982
- X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review', Chem. Rev., 117(15), 10403-10473 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
- Q. Zhang, S. Liu, Y. Lu, L. Xing, and W. Li, Artificial interphases enable dendrite-free li-metal anodes, J. Energy Chem., 58, 198-206 (2021). https://doi.org/10.1016/j.jechem.2020.09.030
- D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, S. Zhang, G. Jiang, L. Chen, A. Yu, and X. Wang, Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries' Nat. Commun., 12, 186. (2021). https://doi.org/10.1038/s41467-020-20339-1
- L. Ma, J. Cui, S. Yao, X. Liu, Y. Luo, X. Shen, and J.-K. Kim, Dendrite-free lithium metal and sodium metal batteries' Energy Storage Mater., 27, 522-554 (2020). https://doi.org/10.1016/j.ensm.2019.12.014
- N. W. Li, Y. Shi, Y. X. Yin, X. X. Zeng, J. Y. Li, C.-J. Li, L.-J. Wan, R. Wen, and Y.-G. Guo, A flexible solid electrolyte interphase layer for long-life lithium metal anodes, Angew. Chem. Int. Ed., 57(6), 1505-1509 (2018). https://doi.org/10.1002/anie.201710806
- H. Huo, J. Gao, N. Zhao, D. Zhang, N.G. Holmes, X. Li, Y. Sun, J. Fu, R. Li, X. Guo, and X. Sun, A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries, Nat. Commun., 12(1), 1-10 (2021). https://doi.org/10.1038/s41467-020-20314-w
- H. Liu, H. Zhou, B. S. Lee, X. Xing, M. Gonzalez, and P. Liu, Suppressing lithium dendrite growth with a single-component coating, ACS Appl. Mater. Interfaces, 9(36), 30635-30642 (2017). https://doi.org/10.1021/acsami.7b08198
- H. Liu, X. Wang, H. Zhou, H. D. Lim, X. Xing, Q. Yan, Y. S. Meng, and P. Liu, Structure and solution dynamics of lithium methyl carbonate as a protective layer for lithium metal, ACS Appl. Energy Mater., 1(5), 1864-1869 (2018). https://doi.org/10.1021/acsaem.8b00348
- Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen, Z. Wang, and C. Wu, Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode, Energy Storage Mater., 16, 411-418 (2019). https://doi.org/10.1016/j.ensm.2018.06.022
- Y. Yuan, F. Wu, G. Chen, Y. Bai, and C. Wu, Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode, J. Energy Chem., 37, 197-203 (2019). https://doi.org/10.1016/j.jechem.2019.03.014
- H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, and J. Wang, Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode, Adv. Energy Mater., 9(22), 1900858 (2019). https://doi.org/10.1002/aenm.201900858
- F. Liu, L. Wang, Z. Zhang, P. Shi, Y. Feng, Y. Yao, S. Ye, H. Wang, X. Wu, and Y. Yu, A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode, Adv. Funct. Mater., 30(23), 2001607 (2020). https://doi.org/10.1002/adfm.202001607
- J, Yang, C. Hu, Y. Jia, Y. Pang, L. Wang, W. Liu, and X. Sun, Surface restraint synthesis of an organic-inorganic hybrid layer for dendrite-free lithium metal anode, ACS Appl. Mater. Interfaces, 11(9), 8717-8724 (2019). https://doi.org/10.1021/acsami.9b00507
- J. Zhu, J. Yang, J. Zhou, T. Zhang, L. Li, J. Wang, and Y. Nuli, A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries, J. Power Sources, 366, 265-269 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.035
- G. Li, Q. Huang, X. He, Y. Gao, D. Wang, S. H. Kim, and D. Wang, Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries, ACS Nano, 12(2), 1500-1507 (2018). https://doi.org/10.1021/acsnano.7b08035
- G. Li, Y. Gao, X. He, Q. Huang, S. Chen, S. H. Kim, and D. Wang, Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries, Nat. Commun., 8(1), 1-10 (2017). https://doi.org/10.1038/s41467-016-0009-6
- Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, and Y. Cui, An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Adv. Mater., 29(10), 1605531 (2017). https://doi.org/10.1002/adma.201605531
- B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Qi. Wang, and J. Zhu, Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29(2), 1603755 (2017). https://doi.org/10.1002/adma.201603755
- S. Lee, D. Seok, Y. Jeong, and H. Sohn, Surface Modification of Li metal electrode with PDMS/GO composite thin film: Controlled growth of Li layer and improved performance of lithium metal battery (LMB), Membr. J., 30(1), 38-45 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.1.38
- H. Lee, D. J. Lee, Y. J. Kim, J. K. Park, and H. T. Kim, A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries, J. Power Sources, 284, 103-108 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.004
- W. J. Kwak, J. Park, T. T. Nguyen, H. Kim, H. R. Byon, M. Jang, and Y.-K. Sun, A dendrite-and oxygen-proof protective layer for lithium metal in lithium-oxygen batteries, J. Mater. Chem. A, 7(8), 3857-3862 (2019). https://doi.org/10.1039/c8ta11941d
- W. J. Kwak, S. J. Park, H. G. Jung, and Y.-K. Sun, Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li-O2 batteries, Adv. Energy Mater., 8(9), 1702258 (2018). https://doi.org/10.1002/aenm.201702258
- F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, and J.-G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135(11), 4450-4456 (2013). https://doi.org/10.1021/ja312241y
- S. Li, S. Fang, H. Dou, and X. Zhang, RbF as a dendriteinhibiting additive in lithium metal batteries, ACS Appl. Mater. Interfaces, 11(23), 20804-20811 (2019). https://doi.org/10.1021/acsami.9b03940
- D. Wang, H. Liu, M. Li, D. Xia, J. Holoubek, Z. Deng, M. Yu, J.Tian, Z. Shan, S. Pi. Ong, P. Liu, and Z. Chen, A long-lasting dual-function electrolyte additive for stable lithium metal batteries, Nano Energy, 75, 104889 (2020). https://doi.org/10.1016/j.nanoen.2020.104889
- H. Ye, Y. X. Yin, S. F. Zhang, Y. Shi, L. Liu, X. X. Zeng, R. Wen, Y.-G. Guo, and L.-J. Wan, Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode, Nano Energy, 36, 411-417 (2017). https://doi.org/10.1016/j.nanoen.2017.04.056
- J. Park, J. Jeong, Y. Lee, M. Oh, M.-H. Ryou, and Y. M. Lee, Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries, Adv. Mater. Interfaces, 3(11), 1600140 (2016). https://doi.org/10.1002/admi.201600140
- Y. J. Kim, H. S. Jin, D. H. Lee, J. Choi, W. Jo, H. Noh, J. Lee, H. Chu, H. Kwack, F. Ye, and H. Lee, Guided Lithium Deposition by Surface Micro-Patterning of Lithium-Metal Electrodes, Chem. Electro. Chem., 5(21), 3169-3175 (2018).
- W. B. Jung, O. B. Chae, M. Kim, Y. Kim, Y.J. Hong, J. Y. Kim, S. Choi, D. Y. Kim, S. Moon, J. Suk, Y. Kang, M. Wu, and H.-T. Jung, Effect of highly periodic Au nanopatterns on dendrite suppression in lithium metal batteries, ACS Appl. Mater. Interfaces, 13(51), 60978-60986 (2021). https://doi.org/10.1021/acsami.1c15196
- S. Schweidler, L. Biasi, A. Schiele, P. Hartmann, T. Brezesinski, and J. Janek, Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study, J. Phys. Chem. C, 122(16), 8829-8835 (2018). https://doi.org/10.1021/acs.jpcc.8b01873
- Z. Liu, Y. Qi, Y. X. Lin, L. Chen, P. Lu, and L. Q. Chen, Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth, J. Electrochem. Soc., 163(3), A592 (2016). https://doi.org/10.1149/2.0151605jes
- J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte, J. Power Sources, 74(2), 219-227 (1998). https://doi.org/10.1016/S0378-7753(98)00067-6
- E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model, J. Electrochem. Soc., 126(12), 2047 (1979). https://doi.org/10.1149/1.2128859
- A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries., npj Computational Materials, 4(1), 1-26 (2018). https://doi.org/10.1038/s41524-017-0060-9
- Y. Feng, C. Zhang, X. Jiao, Z. Zhou, and J. Song, Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework, Energy Storage Mater., 25, 172-179 (2020). https://doi.org/10.1016/j.ensm.2019.10.017
- J. Zeng, Q. Liu, D. Jia, R. Liu, S. Liu, B. Zheng, Y. Zhu, R. Fu, and D. Wu, A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries, Energy Storage Mater., 41, 697-702 (2021). https://doi.org/10.1016/j.ensm.2021.07.002
- J. Li, Z. Kong, X. Liu, B. Zheng, Q. H. Fan, E. Garratt, T. Schuelke, K. Wang, H. Xu, H. Jin, Strategies to anode protection in lithium metal battery: A review, InfoMat, 3(12), 1333-1363 (2021). https://doi.org/10.1002/inf2.12189
- T. B. T. Truong, Y.-R. Chen, G.-Y. Lin, H.-T. Lin, Y.-S. Wu, C.-C. Yang, Lithium polyacrylate polymer coating enhances the performance of graphite/silicon/carbon composite anodes, Electrochim. Acta, 365, 137387 (2021). https://doi.org/10.1016/j.electacta.2020.137387
- N. P. W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J.-H. Kim, Z. Liu, X. Huang, S. A. Krachkovskiy, G. R. Goward, I. Halalay, B. R. Powell, and A. Manthiram, Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-Voltage Li-Ion Batteries, Adv. Energy Mater., 5(23), 1501008 (2015). https://doi.org/10.1002/aenm.201501008
- J. Li, D.-B. Le, P. P. Ferguson, and J. R. Dahn, Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries, Electrochim. Acta, 55(8), 2991-2995 (2010). https://doi.org/10.1016/j.electacta.2010.01.011
- Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang, and S. Hirano, Silicon microparticle anodes with self-healing multiple network binder, Joule, 2(5), 950-961 (2018). https://doi.org/10.1016/j.joule.2018.02.012
- X. Wang, R. Kerr, F. Chen, N. Goujon, J. M. Pringle, D. Mecerreyes, M. Forsyth, and P. C. Howlett, Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes, Adv. Mater., 32(18), 1905219 (2020). https://doi.org/10.1002/adma.201905219
- W. Liu, P. Liu, and D, Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Adv. Energy Mater., 10(43), 2002297 (2020). https://doi.org/10.1002/aenm.202002297
- Q. Zhang, J. Pan, P. Lu, Z. Liu, M. W. Verbrugge, B. W. Sheldon, Y.-T. Cheng, Y. Qi, and X. Xiao, Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries, Nano Lett., 16(3), 2011-2016 (2016). https://doi.org/10.1021/acs.nanolett.5b05283
- J. Pan, Y.-T. Cheng, and Y. Qi, General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes, Phys. Rev. B, 91(13), 134116 (2015). https://doi.org/10.1103/physrevb.91.134116
- Y. Ozhabes, D. Gunceler, and T. A. Arias, Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression, arXiv, 1504.05799, (2015).
- S. Choudhury and L. A. Archer, Lithium fluoride additives for stable cycling of lithium batteries at high current densities, Adv. Electron. Mater., 2(2), 1500246 (2016). https://doi.org/10.1002/aelm.201500246
- Q. Wu, Z. Yao, A. Du, H. Wu, M. Huang, J. Xu, F. Cao, and C. Li, Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium-metal batteries, J. Mater. Chem. A, 9(9), 5606-5618 (2021). https://doi.org/10.1039/D0TA08782C
- W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7(2), 513-537 (2014). https://doi.org/10.1039/C3EE40795K
- S. Jin, Z. Sun, Y. Guo, Z. Qi, C. Guo, X. Kong, Y. Zhu, and H. Ji, High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes, Adv. Mater., 29(38), 1700783 (2017). https://doi.org/10.1002/adma.201700783
- R. A. Huggins, Solid Electrolyte Battery Materials, STANFORD UNIV CALIF CENTER FOR MATERIALS RESEARCH, 1977.
- J. T. Lee, H. Kim, M. Oschatz, D. C. Lee, F. Wu, H.-T. Lin, B. Zdyrko, W. I. Cho, S. Kaskel, and G. Yushin, Micro-and Mesoporous Carbide-Derived Carbon-Selenium Cathodes for High-Performance Lithium Selenium Batteries, Adv. Energy Mater., 5(1), 1400981 (2015). https://doi.org/10.1002/aenm.201400981
- Q. Zhao, Z. Tu, S. Wei, K. Zhang, S. Choudhury, X. Liu, and L. A. Archer, Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries, Angew. Chem. Int. Ed., 57(4), 992-996 (2018). https://doi.org/10.1002/anie.201711598
- G. Hou, C. Ci, D. Salpekar, Q. Ai, Q. Chen, H. Guo, L. Chen, X. Zhang, J. Cheng, K. Kato, R. Vajtai, P. Si, G. Babu, L. Ci, and P. M. Ajayan, Stable lithium metal anode enabled by an artificial multi-phase composite protective film, J. Power Sources, 448, 227547 (2020). https://doi.org/10.1016/j.jpowsour.2019.227547
- X.-B. Cheng, C. Yan, H.-J. Peng, J.-Q. Huang, S.-T. Yang, and Q. Zhang, Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes, Energy Storage Mater., 10, 199-205 (2018). https://doi.org/10.1016/j.ensm.2017.03.008
- H. Wada, M. Menetrier, A. Levasseur, and P. Hagenmuller, Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses, Mater. Res. Bull., 18(2), 189-193 (1983). https://doi.org/10.1016/0025-5408(83)90080-6
- H. Ha, J. Park, S. Ando, C. B. Kim, K. Nagai, B. D. Freeman, and C. J. Ellison, Gas permeation and selectivity of poly (dimethylsiloxane)/graphene oxide composite elastomer membranes, J. Membr. Sci., 518, 131-140 (2016). https://doi.org/10.1016/j.memsci.2016.06.028
- S. Di, X. Nie, G. Ma, W. Yuan, Y. Wang, Y. Liu, S. Shen, and N. Zhang, Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase, Energy Storage Mater., 43, 375-382 (2021). https://doi.org/10.1016/j.ensm.2021.09.021
- B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29(2), 1603755 (2017). https://doi.org/10.1002/adma.201603755
- M. Liu, J. Sun, and Q. Chen, Influences of heating temperature on mechanical properties of polydimethylsiloxane, Sens. Actuator A Phys., 151(1), 42-45 (2009). https://doi.org/10.1016/j.sna.2009.02.016
- H. Ha, J. Park, K. R. Ha, B. D. Freeman, and C. J. Ellison, Synthesis and gas permeability of highly elastic poly (dimethylsiloxane)/graphene oxide composite elastomers using telechelic polymers, Polymer, 93, 53-60 (2016). https://doi.org/10.1016/j.polymer.2016.04.016
- D. J. Lee, H. Lee, Y. J. Kim, J. K. Park, and H. T. Kim, Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode, Adv. Mater., 28(5), 857-863 (2016). https://doi.org/10.1002/adma.201503169
- W.-J. Kwak, H.-G. Jung, D. Aurbach, and Y.-K. Sun, Optimized bicompartment two solution cells for effective and stable operation of Li-O2 batteries, Adv. Energy Mater., 7(21), 1701232 (2017). https://doi.org/10.1002/aenm.201701232
- H. Ohtaki, Structural studies on solvation and complexation of metal ions in nonaqueous solutions, Pure Appl. Chem., 59(9), 1143-1150 (1987). https://doi.org/10.1351/pac198759091143
- H. Xiang, D. Mei, P. Yan, P. Bhattacharya, S. D. Burton, A.W. Cresce, R. Cao, M. H. Engelhard, M. E. Bowden, Z. Zhu, B. J. Polzin, C.-M. Wang, K. Xu, J.-G. Zhang, and W. Xu, The role of cesium cation in controlling interphasial chemistry on graphite anode in propylene carbonate-rich electrolytes, ACS Appl. Mater. Interfaces, 7(37), 20687-20695 (2015). https://doi.org/10.1021/acsami.5b05552
- F. Ding, W. Xu, X. Chen, J. Zhang, Y. Shao, M. H. Engelhard, Y. Zhang, T. A. Blake, G. L. Graff, X. Liu, and J.-G. Zhang, Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism, J. Phys. Chem. C, 118(8), 4043-4049 (2014). https://doi.org/10.1021/jp4127754
- Y. Kameda, Y. Umebayashi, M. Takeuchi, M. A. Wahab, S. Fukuda, S.-I. Ishiguro, M. Sasaki, Y. Amo, and T. Usuki, Solvation structure of Li+ in concentrated LiPF6-propylene carbonate solutions, J. Phys. Chem. B, 111(22), 6104-6109 (2007). https://doi.org/10.1021/jp072597b
- S. H. Lee and J. C. Rasaiah, Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25 C, J. Chem. Phys., 101(8), 6964-6974 (1994). https://doi.org/10.1063/1.468323
- S. H. Lee and J. C. Rasaiah, Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25 C, J. Phys. Chem., 100(4), 1420-1425 (1996). https://doi.org/10.1021/jp953050c
- Q. Xu, Y. Yang, and H. Shao, Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries, Electrochim. Acta, 212, 758-766 (2016). https://doi.org/10.1016/j.electacta.2016.07.080
- J.-L. Lin, C. Huang, C.-J. M. Chin, and J. R. Pan, The origin of Al (OH) 3-rich and Al13-aggregate flocs composition in PACl coagulation, Water Res., 43(17), 4285-4295 (2009). https://doi.org/10.1016/j.watres.2009.06.023
- Q. Li, B. Quan, W. Li, J. Lu, J. Zheng, X. Yu, J. Li, and H. Li, Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure, Nano Energy, 45, 463-470 (2018). https://doi.org/10.1016/j.nanoen.2018.01.019