DOI QR코드

DOI QR Code

Surface Modification of Li Metal Electrode with PDMS/GO Composite Thin Film: Controlled Growth of Li Layer and Improved Performance of Lithium Metal Battery (LMB)

PDMS/GO 복합체 박막의 리튬 금속 표면 개질: 리튬전극의 성장 제어 및 리튬금속전지(LMB) 성능 향상

  • Lee, Sanghyun (Department of Chemical Engineering, Kwangwoon University) ;
  • Seok, Dohyeong (Department of Chemical Engineering, Kwangwoon University) ;
  • Jeong, Yohan (Department of Chemical Engineering, Kwangwoon University) ;
  • Sohn, Hiesang (Department of Chemical Engineering, Kwangwoon University)
  • Received : 2020.01.15
  • Accepted : 2020.01.29
  • Published : 2020.02.29

Abstract

Although Lithium metal battery (LMB) has a very large theoretical capacity, it has a critical problem such as formation of dendrite which causes short circuit and short cycle life of the LMB. In this study, PDMS/GO composite with evenly dispersed graphene oxide (GO) nanosheets in poly (dimethylsiloxane) (PDMS) was synthesized and coated into a thin film, resulting in the effect that can physically suppress the formation of dendrite. However, PDMS has low ion conductivity, so that we attained improved ion conductivity of PDMS/GO thin film by etching technic using 5wt% hydrofluoric acid (HF), to facilitate the movement of lithium (Li) ions by forming the channel of Li ions. The morphology of the PDMS/GO thin film was observed to confirm using SEM. When the PDMS/GO thin film was utilized to lithium metal battery system, the columbic efficiency was maintained at 87.4% on average until the 100th cycles. In addition, voltage profiles indicated reduced overpotential in comparison to the electrode without thin film.

리튬금속전지(LMB)는 매우 큰 이론 용량을 갖지만 단락(short circuit), 수명 감소 등을 야기하는 덴드라이트(dendrite)가 형성되는 큰 문제점을 갖고 있다. 본 연구에서는 poly(dimethylsiloxane) (PDMS)에 graphene oxide (GO) nanosheet를 고르게 분산시킨 PDMS/GO 복합체를 합성하였고 이를 박막 형태로 코팅하여 덴드라이트의 형성을 물리적으로 억제할 수 있는 막의 효과를 이끌어내었다. PDMS의 경우, 그 자체로는 이온 전도체가 아니기 때문에 리튬 이온의 통로를 형성시켜 리튬 이온의 이동을 원활하게 하기 위하여 5wt% 불산(HF)으로 에칭하여 PDMS/GO 박막이 이온전도성을 가질 수 있도록 하였다. 주사전자현미경(scanning electron microscopy, SEM)을 통해 전면 및 단면을 관찰하여 PDMS/GO 박막의 형상을 확인하였다. 그리고 PDMS/GO 박막을 리튬금속전지에 적용하여 실시한 배터리 테스트 결과, 100번째 사이클까지 쿨롱 효율(columbic efficiency)이 평균 87.4%로 유지되었고, 박막이 코팅되지 않은 구리 전극보다 과전압이 감소되었음을 전압 구배(voltage profile)를 통해 확인하였다.

Keywords

References

  1. H. Sohn, Q. Xiao, A. Seubsai, Y. Ye, J. Lee, H. Han, S. Park, G. Chen, and Y. Lu, "Thermally robust porous bimetallic ($Ni_xPt_{1-x}$) alloy mesocrystals within carbon framework: High-performance catalysts for oxygen reduction and hydrogenation reactions", ACS Appl. Mater. Interfaces, 11, 21435 (2019). https://doi.org/10.1021/acsami.8b21661
  2. D. Seok, Y. Jeong, K. Han, D. Y. Yoon, and H. Sohn, "Recent progress of electrochemical energy devices: Metal oxide-carbon nanocomposites as materials for next-generation chemical storage for renewable energy", Sustainability, 11, 3694 (2019). https://doi.org/10.3390/su11133694
  3. F. Dai, R. Yi, H. Yang, Y. Zhao, L. Luo, M. L. Gordin, H. Sohn, S. Chen, C. Wang, S. Zhang, and D. Wang, "Minimized volume expansion in hierarchical porous silicon upon lithiation", ACS Appl. Mater. Interfaces, 11, 13257 (2019). https://doi.org/10.1021/acsami.9b01501
  4. K. B. Hwang, H. Sohn, and S. H. Yoon, "Mesostructured niobium-doped titanium oxide-carbon ($Nb-TiO_2-C$) composite as an anode for high-performance lithium-ion batteries", J. Power Sources, 378, 225 (2018). https://doi.org/10.1016/j.jpowsour.2017.12.055
  5. H. Sohn, D. H. Kim, R. Yi, D. Tang, S.-E. Lee, Y. S. Jung, and D. Wang, "Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries", J. Power Sources, 334, 128 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.096
  6. H. Sohn, D. Kim, J. Lee, and S. Yoon, "Facile synthesis of mesostructured $TiO_2$-graphitized carbon ($TiO_2-gC$) composite through the hydrothermal process and its application as the anode of lithium ion batteries", RSC Adv., 6, 39484 (2016). https://doi.org/10.1039/C6RA01614F
  7. D. Tang, Q. Huang, R. Yi, F. Dai, M. L. Gordin, S. Hu, S. Chen, Z. Yu, H. Sohn, J. Song, and D. Wang, "Room-temperature synthesis of mesoporous $Sn/SnO_2$ composite as anode for sodium-ion batteries", Euro. J. Inorg. Chem., 2016, 1950 (2016). https://doi.org/10.1002/ejic.201501441
  8. H. Sohn, M. L. Gordin, M. Regula, D. H. Kim, Y. S. Jung, J. Song, and D. Wang, "Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium-sulfur batteries", J. Power Sources, 302, 70 (2016). https://doi.org/10.1016/j.jpowsour.2015.10.013
  9. X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, "Toward safe lithium metal anode in rechargeable batteries: A review", Chem. Rev., 117, 10403 (2017). https://doi.org/10.1021/acs.chemrev.7b00115
  10. Y. Sun, N. Liu, and Y. Cui, "Promises and challenges of nanomaterials for lithium-based rechargeable batteries", Nat. Energy, 1, 16071 (2016). https://doi.org/10.1038/nenergy.2016.71
  11. Y. Gao, Z. Yan, J. L. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y. C. Li, H. Wang, S. H. Kim, T. E. Mallouk, and D. Wang, "Polymer-inorganic solid-electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions", Nat. Mater., 18, 384 (2019). https://doi.org/10.1038/s41563-019-0305-8
  12. Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, and Y. Cui, "An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes", Adv. Mater., 29, 1605531 (2017). https://doi.org/10.1002/adma.201605531
  13. J. A. Seo, J. K. Koh, J. H. Koh, and J. H. Kim, "Preparation and characterization of plasticized Poly(vinyl chloride)-g-Poly(oxyethylene methacrylate) graft copolymer electrolyte membranes", Membr. J., 29, 30 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.1.30
  14. Y. Jeong, D. Seok, S. Lee W. H. Shin, and H. Sohn, "Polymer/inorganic nanohybrid membrane on lithium metal electrode: Effective control of surficial growth of lithium layer and its improved electrochemical performance", Membr. J., In Press (2020).
  15. K. Liu, A. Pei, H. R. Lee, B. Kong, N. Liu, D. Lin, Y. Liu, C Liu, P. Hsu, Z. Bao, and Y. Cui, "Lithium metal anodes with an adaptive "solid-liquid" interfacial protective layer", J. Am. Chem. Soc., 139, 4815 (2017). https://doi.org/10.1021/jacs.6b13314
  16. W. Liu, W. Li, D. Zhuo, G. Zheng, Z. Lu, K. Liu, and Y. Cui, "Core-shell nanoparticle coating as an interfacial layer for dendrite-free lithium metal anodes", ACS Cent. Sci., 3, 135 (2017). https://doi.org/10.1021/acscentsci.6b00389
  17. G. Zheng, C. Wang, A. Pei, J. Lopez, F. Shi, Z. Chen, A. D. Sendek, H.-W. Lee, Z. Lu, H. Schneider, M. M. Safont-Sempere, S. Chu, Z. Bao, and Y. Cui, "High-performance lithium metal negative electrode with a soft and flowable polymer coating", ACS Energy Lett., 1, 1247 (2016). https://doi.org/10.1021/acsenergylett.6b00456
  18. A. A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, and B.-J. Hwang, "Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery", Nanoscale, 10, 6125 (2018). https://doi.org/10.1039/C7NR09058G
  19. B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, "Poly(dimethylsiloxane) thin film as a stable interfacial layer for high performance lithium-metal battery anodes", Adv. Mater., 29, 1603755 (2017). https://doi.org/10.1002/adma.201603755
  20. T. Foroozan, F. A. Soto, V. Yurkiv, S. Sharifi-Asl, R. Deivanayagam, Z. Huang, R. Rojaee, F. Mashayek, P. B. Balbuena, and R. Shahbazian-Yassar, "Synergistic effect of graphene oxide for impeding the dendritic plating of Li", Adv. Funct. Mater., 28, 1705917 (2018). https://doi.org/10.1002/adfm.201705917
  21. J. Mohanta, D. K. Padhi, and S. Si, "Li ion conductivity in PEO-graphene oxide nanocomposite polymer electrolytes: A study on effect of the counter anion", J. Appl. Polym. Sci., 135, 46336 (2018). https://doi.org/10.1002/app.46336
  22. F. J. Yang, Y. F. Huang, M. Q. Zhang, and W. H. Ruan, "Significant improvement of ionic conductivity of high-graphene oxide-loading ice-templated poly (ionic liquid) nanocomposite electrolytes", Polymer, 153, 438 (2018). https://doi.org/10.1016/j.polymer.2018.08.039
  23. H. Yu, B. Zhang, C. Bulin, R. Li, and R. Xing, "High-efficient synthesis of graphene oxide based on improved hummers method", Sci. Rep., 6, 36143 (2016). https://doi.org/10.1038/srep36143
  24. J. Chen, B. Yao, C. Li, and G. Shi, "An improved hummers method for eco-friendly synthesis of graphene oxide", Carbon, 64, 225 (2013). https://doi.org/10.1016/j.carbon.2013.07.055
  25. N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva, and A. D. Gorchinskiy, "Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations", Chem. Mater., 11, 771 (1999). https://doi.org/10.1021/cm981085u
  26. J. Chen, Y. Li, L. Huang, C. Li, and G. Shi, "High-yield preparation of graphene oxide from small graphite flakes via an improved hummers method with a simple purification process", Carbon, 81, 826 (2015). https://doi.org/10.1016/j.carbon.2014.10.033
  27. D. Seok, Y. Kim, and H. Sohn, "Synthesis of $Fe_3O_4$/porous carbon composite for efficient $Cu^{2+}$ ions removal", Membr. J., 29, 308 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.6.308
  28. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, "Improved synthesis of graphene oxide", ACS Nano, 4, 4806 (2010). https://doi.org/10.1021/nn1006368
  29. D. Konios, M. M. Stylianakis, E. Stratakis, and E. Kymakis, "Dispersion behaviour of graphene oxide and reduced graphene oxide", J. Colloid Interface Sci., 430, 108 (2014). https://doi.org/10.1016/j.jcis.2014.05.033
  30. H. Ha, J. Park, K. Ha, B. D. Freeman, and C. J. Ellison, "Synthesis and gas permeability of highly elastic poly(dimethylsiloxane)/graphene oxide composite elastomers using telechelic polymers", Polymer, 93, 53 (2016). https://doi.org/10.1016/j.polymer.2016.04.016
  31. B. Wang, B.-K. Lee, M.-J. Kwak, and D.-W. Lee, "Graphene/polydimethylsiloxane nanocomposite strain sensor", Rev. Sci. Instrum., 84, 105005 (2013). https://doi.org/10.1063/1.4826496