• Title/Summary/Keyword: Level-set 기법

Search Result 363, Processing Time 0.028 seconds

A Study on the Level-Set Scheme for the Analysis of the Free Surface Flow by a Finite Volume Method (유한체적법에 의한 자유수면 유동해석에서 Level-Set 기법에 대한 연구)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.40-49
    • /
    • 1999
  • A Finite Volume Method for the two-dimensional incompressible, two-fluids Navies-Stokes equation and level-set scheme are used to analyse the interface of two fluids, free-surface flow. The numerical characteristics and the applicability of level-set scheme are brief1y investigated and appraised by solving oscillating small surface wave in a water tank and dam break problems. In the numerical results, a method for improving the convergence of the solution is presented.

  • PDF

NUMERICAL ANALYSIS OF DYNAMIC CONTACT ANGLE PROBLEMS IN ELECTROWETTING WITH LEVEL SET METHOD (레벨셋 기법을 이용한 전기습윤 현상의 동적 접촉각 문제에 대한 수치해석)

  • Park, J.K.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.155-158
    • /
    • 2009
  • We developed a numerical method to analyze the contact-line problems, incorporating a dynamic contact angle model. We used level set method to capture free surface. The method is applied to the analysis of dynamic behavior of a droplet in DC electrowetting. The result is compared with an experimental data and result of perturbation method.

  • PDF

Analysis of RTM Process Using the Extended Finite Element Method (확장 유한 요소 법을 적용한 RTM 공정 해석)

  • Jung, Yeonhee;Kim, Seung Jo;Han, Woo-Suck
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.363-372
    • /
    • 2013
  • Numerical simulation for Resin Transfer Molding manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions. Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with a simple channel flow model. Several application examples are analyzed to demonstrate ability of this method.

Design and Implementation of an Efficient Buffer Replacement Method for Real-time Multimedia Databases Environments (실시간 멀티미디어 데이터베이스 환경을 위한 효율적인 버퍼교체 기법 설계 및 구현)

  • 신재룡;피준일;유재수;조기형
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.372-385
    • /
    • 2002
  • In this paper, we propose an efficient buffer replacement method for the real-time multimedia data. The proposed method has multi level priority to consider the real-time characteristics. Each priority level is divided into a cold data set that is likely to be referenced for the first time and a hot data set that is likely to be re-referenced. An operation to select the victim data is sequentially executed from the cold set with the minimum priority level to the hot set with the maximum Priority level. It is chosen only at the lower level than or equal to the priority of the transaction that requests a buffer allocation. In the cold set, our method selects a media that has the maximum size in the level for a target of victim first of all. And in the hot set, our method selects a medium that has the maximum interval of the reference first of all. Since it maintains many popular media in the limited buffer space, the buffer hit ratio is increased. It also manages many service requests. As a result, our method improves the overall performance of the system. We compare the proposed method with the Priority-Hints method in terms of the buffer hit ratio and the deadline missing ratio of transactions. It is shown through the performance evaluation that our method outperforms the existing methods.

  • PDF

ASSESSMENT OF PROPERTY INTERPOLATION METHODS IN LEVEL SET METHOD (레벨셋 기법의 물성 보간 방법에 대한 고찰)

  • Park, J.K.;Oh, J.M.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.283-289
    • /
    • 2009
  • In level set method, material properties are made to change smoothly across an interface of two materials with different properties by introducing an interpolation or smoothing scheme. So far, the weighted arithmetic mean (WAM) method has been exclusively adopted in level set method, without complete assessment for its validity. We showed here that the weighted harmonic mean (WHM) method for rate constants of various rate processes, including viscosity, thermal conductivity, electrical conductivity, and permittivity, gives much more accurate results than the WAM method. The selection of interpolation scheme is particularly important in multi-phase electrohydrodynamic problems in which driving force for fluid flow is electrical force exerted on the phase interface. Our analysis also showed that WHM method for both electrical conductivity and permittivity gives not only more accurate, but also more physically realistic distribution of electrical force at the interface. Our arguments are confirmed by numerical simulations of drop deformation under DC electric field.

  • PDF

Study on the Finite Element Discretization of the Level Set Redistancing Algorithm (Level Set Redistancing 알고리즘의 유한요소 이산화 기법에 대한 연구)

  • Kang Sungwoo;Yoo Jung Yul;Lee Yoon Pyo;Choi HyoungGwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.6 s.237
    • /
    • pp.703-710
    • /
    • 2005
  • A finite element discretization of the advection and redistancing equations of level set method has been studied. It has been shown that Galerkin spatial discretization combined with Crank-Nicolson temporal discretization of the advection equation of level set yields a good result and that consistent streamline upwind Petrov-Galerkin(CSUPG) discretization of the redistancing equation gives satisfactory solutions for two test problems while the solutions of streamline upwind Petrov-Galerkin(SUPG) discretization are dissipated by the numerical diffusion added for the stability of a hyperbolic system. Furthermore, it has been found that the solutions obtained by CSUPG method are comparable to those by second order ENO method.

Level Set Based Topological Shape Optimization of Hyper-elastic Nonlinear Structures using Topological Derivatives (위상 민감도를 이용한 초탄성 비선형 구조의 레벨셋 기반 위상 및 형상 최적설계)

  • Kim, Min-Geun;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.559-567
    • /
    • 2012
  • A level set based topological shape optimization method for nonlinear structure considering hyper-elastic problems is developed. To relieve significant convergence difficulty in topology optimization of nonlinear structure due to inaccurate tangent stiffness which comes from material penalization of whole domain, explicit boundary for exact tangent stiffness is used by taking advantage of level set function for arbitrary boundary shape. For given arbitrary boundary which is represented by level set function, a Delaunay triangulation scheme is used for current structure discretization instead of using implicit fixed grid. The required velocity field in the actual domain to update the level set equation is determined from the descent direction of Lagrangian derived from optimality conditions. The velocity field outside the actual domain is determined through a velocity extension scheme based on the method suggested by Adalsteinsson and Sethian(1999). The topological derivatives are incorporated into the level set based framework to enable to create holes whenever and wherever necessary during the optimization.

Numerical Analysis of Three-dimensional Sloshing Flow Using Least-square and Level-set Method (최소자승법과 Level-set 방법을 적용한 3차원 슬로싱 유동의 수치해석)

  • Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.759-765
    • /
    • 2017
  • In this study, a three-dimensional least-square, level-set-based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The code was validated by solving some benchmark problems. The proposed method was found to provide improved results against other existing methods, by using a coarser mesh. The results of the numerical experiments conducted during the course of this study showed that the proposed method was both robust and accurate for the simulation of three-dimensional sloshing problems. Using a substantially coarse grid, historical results of the dynamic pressure at a selected position corresponded with existing experimental data. The pressure history with a finer grid was similar to that of a coarse grid; however, a fine grid provided higher peak pressures. The present method could be extended to the analysis of a sloshing problem in a complex geometrical configuration using unstructured meshes owing to the features of FEM.

ANALYSIS OF ELECTROWETTING DYNAMICS WITH CONSERVATIVE LEVEL SET METHOD (레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석)

  • Park, J.K.;Hong, J.W.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.84-87
    • /
    • 2009
  • Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models.

  • PDF

A Numerical Study on Patterning Process Including a Self-Alignment Technique of a Microdroplet (미세액적의 자기정렬 기법을 포함한 패터닝 공법에 대한 해석적인 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.28-38
    • /
    • 2009
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The liquid-air interface is tracked by a level-set method, which is improved by incorporating a sharp-interface modeling technique for accurately enforcing the matching conditions at the liquid-gas interface and the no-slip condition at the fluid-solid interface. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.