• Title/Summary/Keyword: Level Assessment

Search Result 5,539, Processing Time 0.033 seconds

Probabilistic Safety Assessment for High Level Nuclear Waste Repository System

  • Kim, Taw-Woon;Woo, Kab-Koo;Lee, Kun-Jai
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.1
    • /
    • pp.53-72
    • /
    • 1991
  • An integrated model is developed in this paper for the performance assessment of high level radioactive waste repository. This integrated model consists of two simple mathematical models. One is a multiple-barrier failure model of the repository system based on constant failure rates which provides source terms to biosphere. The other is a biosphere model which has multiple pathways for radionuclides to reach to human. For the parametric uncertainty and sensitivity analysis for the risk assessment of high level radioactive waste repository, Latin hypercube sampling and rank correlation techniques are applied to this model. The former is cost-effective for large computer programs because it gives smaller error in estimating output distribution even with smaller number of runs compared to crude Monte Carlo technique. The latter is good for generating dependence structure among samples of input parameters. It is also used to find out the most sensitive, or important, parameter groups among given input parameters. The methodology of the mathematical modelling with statistical analysis will provide useful insights to the decision-making of radioactive waste repository selection and future researches related to uncertain and sensitive input parameters.

  • PDF

Probabilistic seismic assessment of mega buckling-restrained braced frames under near-fault ground motions

  • Veismoradi, Sajad;Darvishan, Ehsan
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.487-498
    • /
    • 2018
  • Buckling-restrained braces are passive control devices with high level of energy dissipation ability. However, they suffer from low post-yield stiffness which makes them vulnerable to severe ground motions, especially near-field earthquakes. Among the several methods proposed to improve resistance of BRB frames, mega-brace configuration can be a solution to increase frame lateral strength and stiffness and improve distribution of forces to prevent large displacement in braces. Due to the limited number of research regarding the performance of such systems, the current paper aims to assess seismic performance of BRB frames with mega-bracing arrangement under near-field earthquakes via a detailed probabilistic framework. For this purpose, a group of multi-story mega-BRB frames were modelled by OpenSEES software platform. In the first part of the paper, simplified procedures including nonlinear pushover and Incremental Dynamic Analysis were conducted for performance evaluation. Two groups of near-fault seismic ground motions (Non-pulse and Pulse-like records) were considered for analyses to take into account the effects of record-to-record uncertainties, as well as forward directivity on the results. In the second part, seismic reliability analyses are conducted in the context of performance based earthquake engineering. Two widely-known EDP-based and IM-based probabilistic frameworks are employed to estimate collapse potential of the structures. Results show that all the structures can successfully tolerate near-field earthquakes with a high level of confidence level. Therefore, mega-bracing configuration can be an effective alternative to conventional BRB bracing to withstand near-field earthquakes.

Teaching method for general mathematics subjects using the correlation analysis between the mathematics basic education evaluations (수학 기초학력 평가들 간의 상관관계 분석을 통한 교양수학 교과목 학습지도 방안)

  • Lim, Yeon-Hui;Pyo, Yong-Soo
    • Journal of the Korean School Mathematics Society
    • /
    • v.18 no.3
    • /
    • pp.335-352
    • /
    • 2015
  • In this paper, we selected 145 students from engineering college students who took P University's the Scholastic Level Assessment and registered the Basic Mathematics Class among the students who achieved 4th~7th grade in the mathematics B-type of the College Scholastic Ability Test. We compared and analyzed the correlation among the chosen students' grade for the College Scholastic Ability Test, test results of the Scholastic Level Assessment and mid-term test of the Basic Mathematics Subject, type of college entrance and actual condition survey of students in order to derive optimized teaching method for general mathematics subjects which can possibly increase the students' academic ability.

Concept Design of Fire Safety Module for SV20 Service in the Korean e-Navigation System

  • Kim, Byeol;Moon, Serng-Bae;Hwang, Kwang-Il
    • Journal of Navigation and Port Research
    • /
    • v.42 no.5
    • /
    • pp.323-330
    • /
    • 2018
  • The Korean e-Navigation system is a Korean approach to correspond with implementation of IMO e-Navigation. It provides five services, among them SV20 service, a ship remote monitoring system that collects and processes sensor information related to fire, navigation, and seakeeping performance safety. The system also detects abnormal conditions such as fires, capsizing, sinking, navigation equipment failure during navigation, and calculates the safety index and determines the emergency level. According to emergency level, it provides appropriate emergency response guidance for the onboard operator. The fire safety module is composed of three sub-modules; each module is the safety index sub-module, the emergency level determination sub-module and emergency response guidance sub-module. In this study, operational concept of the fire safety module in SV20 service is explained, and fire safety assessment factors are estimated, to calculate the fire safety index. Fire assessment factors included 'Fire detector position factor,' 'Smoke diffusion rate factor,' and 'Fire-fighting facilities factor.'

Determination of Risk Level Using Fuzzy Multi-Criteria Decision Method (퍼지 다기준 의사결정기법을 이용한 위험수준평가)

  • Jung, Sang-Yun;Cho, Sung-Ku
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.4
    • /
    • pp.627-638
    • /
    • 1998
  • For any hazardous operation or risky project to be carried out safely and economically, it is of the utmost importance to formulate proper risk management policies based on the rational assessment of the risk levels of various potential hazards. In this paper, a Fuzzy Multi-Criteria Decision Making(FMCDM) method for risk assessment is proposed. The method evaluates, on the basis of fuzzy set theory, the risk level of a risky situation by aggregating the assessed levels of risk factors and their subjective weights. The method also allows some flexibility for the future users in the sense that, first, the relative importance weights for the three risk factors can be adjusted according to the nature of projects or systems and, second, the users have the choice between the two types of risk assessment results, that is, the assessed risk levels or the ranks of the risk situations. A numerical example for the proposed FMCDM method is provided to illustrate the computational procedure. To see how the suggested FMCDM method describes well people's perceived risk level, we compared the risk values derived from the suggested method with the subjective risk evaluations for ten risky situations.

  • PDF

Hazards Assessment and Workplace Management of Epichlorohydrin (Epichlorohydrin의 유해성과 작업환경 관리)

  • Kim, Hyeon-Yeong;Hwang, Yang In;Kuk, Won-Kwen
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.2
    • /
    • pp.164-173
    • /
    • 2012
  • Objectives: Epichlorohydrin is a material that has been predicted to have high volatility and strong toxicity and is used normally in working area. Therefore, the hazardous and dangerous level and the foreign management system about epichlorohydrin should be invested at home and abroad and through hazard assessment for occupational environment measurement and exposure status of industrial workers in domestic working area. Methods: To assess risk and to suggest Development and Adoption to prevent health damage of workers owing to the epichlorohydrin exposure, the hazardousness and dangerousness of epichlorohydrin and its practical examples and regulation level for domestic and abroad health impairment are researched on the base of various references. Results: The epichlorohydrin caused skin and mucus membrane irritation, respiratory paralysis, kidney and live damage under the influence of acute toxicity and in animal study, it was confirmed as a doubtful carcinogenic substance to trigger reducement of sperm number and reproduction ability, abnormal spermatogenesis, mutagen, increase of forestomach epithelium and occurrence of papilloma and so on, as well as it induced stimulus asthma and allergic contact dermatitis for exposure workers. Conclusions: Epichlorohydrin was found to occur allergic contact dermatitis, carcinogenesis doubt and reproduction toxicity and was verified as a material which would be established reinforcement of management level to care health of handlers, such as denotement dangerousness of skin absorption.

Internal Event Level 1 Probabilistic Safety Assessment for Korea Research Reactor (국내 연구용원자로 전출력 내부사건 1단계 확률론적안전성평가)

  • Lee, Yoon-Hwan;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.3
    • /
    • pp.66-73
    • /
    • 2021
  • This report documents the results of an at-power internal events Level 1 Probabilistic Safety Assessment (PSA) for a Korea research reactor (KRR). The aim of the study is to determine the accident sequences, construct an internal level 1 PSA model, and estimate the core damage frequency (CDF). The accident quantification is performed using the AIMS-PSA software version 1.2c along with a fault tree reliability evaluation expert (FTREX) quantification engine. The KRR PSA model is quantified using a cut-off value of 1.0E-15/yr to eliminate the non-effective minimal cut sets (MCSs). The final result indicates a point estimate of 4.55E-06/yr for the overall CDF attributable to internal initiating events in the core damage state for the KRR. Loss of Electric Power (LOEP) is the predominant contributor to the total CDF via a single initiating event (3.68E-6/yr), providing 80.9% of the CDF. The second largest contributor is the beam tube loss of coolant accident (LOCA), which accounts for 9.9% (4.49E-07/yr) of the CDF.

Improvements to the RELAP5/MOD3 Reflood Model and Assessment (RELAP5 /MOD3 재관수 모델의 개선 및 평가)

  • Chung, B.D.;Lee, Y.J.;Park, C.E.;Choi, C.J.;Hwang, T.S.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.265-276
    • /
    • 1994
  • Several improvements to the RELAP5/MOD3 reflood model hate been made. These improvement were made to correct deficiencies in the reflood model identified by the assessment of the RELAP5/MOD3 code against FLECHT-SEASET experiments. The improvements consist of modification of reflood wall heat transfer package and adjusting the droplet size in dispersed flow regime. The time smoothing of wall vaporization and level tracking of transition flow are also added to eliminate the pressure spikes and level oscillation during reflood process. Assessment of the improved model against FLECHT-SEASET experimental data and application of LBLOCA analysis for plant shows that the deficiencies have been corrected.

  • PDF

The effect of the number of subintervals upon the quantification of the seismic probabilistic safety assessment of a nuclear power plant

  • Ji Suk Kim;Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1420-1427
    • /
    • 2023
  • Seismic risk has received increased attention since the 2011 Fukushima accident in Japan. The seismic risk of a nuclear power plant is evaluated via seismic probabilistic safety assessment (PSA), for which several methods are available. Recently, the discrete approach has become widely used. This approximates the seismic risk by discretizing the ground motion level interval into a small number of subintervals with the expectation of providing a conservative result. The present study examines the effect of the number of subintervals upon the results of seismic risk quantification. It is demonstrated that a small number of subintervals may lead to either an underestimation or overestimation of the seismic risk depending on the ground motion level. The present paper also provides a method for finding the boundaries between overestimation and underestimation regions, and illustrates the effect of the number of subintervals upon the seismic risk evaluation with an example. By providing a method for determining the effect of a small number of subintervals upon the results of seismic risk quantification, the present study will assist seismic PSA analysts to determine the appropriate number of subintervals and to better understand seismic risk quantification.

Recent Trends of Conformity Assessment Activity (적합성 평가 활동의 최근 동향)

  • Yang, Bo-Suk
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.459-464
    • /
    • 2002
  • In this paper, the recent trends of conformity assessment activity which is carrying out at ISO is summarized. It is an increasing requirement of quality assurance systems that a company's engineers and technicians are able to demonstrate that they have the required level of knowledge and skill. This is particularly so since maintenance and Inspection activities are very operator dependent and those in authority have to place great reliance on the skill, experience, Judgement and integrity of the personnel involved.

  • PDF