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a b s t r a c t

Seismic risk has received increased attention since the 2011 Fukushima accident in Japan. The seismic
risk of a nuclear power plant is evaluated via seismic probabilistic safety assessment (PSA), for which
several methods are available. Recently, the discrete approach has become widely used. This approxi-
mates the seismic risk by discretizing the ground motion level interval into a small number of sub-
intervals with the expectation of providing a conservative result. The present study examines the effect
of the number of subintervals upon the results of seismic risk quantification. It is demonstrated that a
small number of subintervals may lead to either an underestimation or overestimation of the seismic risk
depending on the ground motion level. The present paper also provides a method for finding the
boundaries between overestimation and underestimation regions, and illustrates the effect of the
number of subintervals upon the seismic risk evaluation with an example. By providing a method for
determining the effect of a small number of subintervals upon the results of seismic risk quantification,
the present study will assist seismic PSA analysts to determine the appropriate number of subintervals
and to better understand seismic risk quantification.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction been introduced, alternative quantification methods based on the
After seismic events such as the 2011 earthquake in Fukushima,
Japan, the 2016 earthquake in Gyeongju, South Korea, and the 2017
earthquake in Pohang, South Korea, much attention has been
focused on seismic risk [1e4]. Meanwhile, seismic probabilistic
safety assessment (PSA) has gained much recognition for evalu-
ating the safety of a nuclear power plant. Seismic PSA includes both
hazard analysis and fragility analysis. Thus, the initiating event
frequency can be determined by the hazard curve, which presents
the annual exceedance frequency of the seismic event, while the
failure probability of the system, structures, and components (SSCs)
can be obtained from the fragility curve. The seismic PSA is quan-
tified by calculating the convolutions of the hazard and fragility
curves, and then evaluating the core damage frequency of a specific
nuclear power plant due to a given seismic event.

Various quantification methods have been used in seismic PSA.
For example, Kennedy [5] presented a closed form expression of the
seismic risk for the entire ground motion level by assuming a
hazard curve with a power-law distribution. However, it is difficult
to obtain such closed-form expressions for most practical applica-
tions. While discrete probability distribution methods [6,7] have
by Elsevier Korea LLC. This is an
Monte Carlo simulation and Latin hypercube sampling methods
have been widely used. A hybrid method that combines sampling
and discrete approaches was first proposed by Zhou et al. [8]. More
recently, Watanabe et al. [9] developed a sampling approach for
considering the correlations between failures; this approach was
termed the direct quantification of a fault tree using the Monte
Carlo simulation (DQFM). Subsequently, Kwag et al. [10,11] devel-
oped an improved DQFM method for quantifying the seismic risk
with a smaller number of samples, and using Latin Hypercube
sampling. However, an approach that uses discrete ground motion
level subintervals has beenmost commonly used in recent years for
the quantification of seismic PSAmodels [6,12,13]. In this approach,
the ground motion level of interest is discretized into a small
number of subintervals, the occurrence frequency for each subin-
terval is calculated from the hazard curve, and the corresponding
failure probabilities of the SSCs are calculated from the fragility
curve. This approach has the advantage of logically linking the
primary seismic event tree and the secondary event trees that are
used to further analyze the consequences of the primary event tree.
This makes it possible to logically combine the failures in the pri-
mary and secondary event trees in minimal cut sets (unique com-
binations of component failures that can trigger system failure) and
makes it easier and more convenient to evaluate these minimal cut
sets. In addition, this appraoch makes it possible to build a multi-
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unit risk assessment model by combining the seismic PSA models
for multiple units.

However, while the accuracy of the approximation increases as
the number of ground motion level subintervals increases, a small
number of such subintervals (usually around five) is generally used
to reduce the number of seismic PSA models that need to be
handled. This is because a separate seismic PSAmodel is developed
for each ground motion level subinterval. For example, the Risk
Assessment of Operational Events Handbook [12] uses three
groundmotion level subintervals, while the Surry seismic PSA [ [14]
uses eight. The use of such a small number of ground motion level
subintervals has been accepted with the expectation that it will
lead to conservative seismic risk quantification results.

The present study examines the effect of using a small number
of groundmotion level subintervals upon the results of seismic risk
quantification. Specifically, the question of whether a small number
of groundmotion level subintervals will lead to an underestimation
or overestimation of the seismic risk of a nuclear power plant is
examined. Section 2 introduces the approach with discrete ground
motion level subintervals, and analyzes the effect of the number of
ground motion level subintervals upon seismic risk. Section 3
provides the method for identifying the ground motion level re-
gions where the seismic risk may be underestimated when the
number of ground motion level subintervals is small. Section 4 il-
lustrates how a small number of ground motion level subintervals
can lead to either an overestimation or underestimation of seismic
risk. Section 5 provides a discussion of the results, and Section 6
summarizes the conclusions of the present study.
Fig. 1. Typical hazard and fragility curves.
2. Seismic risk quantification using discrete ground motion
level subintervals

2.1. Convolution of hazard and fragility curves

Theoretically, the seismic risk is quantified by the convolution of
hazard and fragility curves according to Eq. (1) [5,7,15]:

PðxÞ¼
ð∞
0

�dHðxÞ
dx

FðxÞdx (1)

where HðxÞ and FðxÞ are the hazard and fragility curves for the
ground motion level x. When the seismic risk is quantified for the
ground motion level interval between a and b, the seismic risk can
be approximated by the Riemann sum [16] as given by Eq. (2):

PðxÞ¼
ðb
a

� dHðxÞ
dx

FðxÞdxz
XN
i¼1

�h
�
x*i
�
F
�
x*i
�
Dxi (2)

where the ground motion level interval is discretized into N sub-
intervals with x0;/;xN , and x*i ’s are the midpoints for the Riemann

sum; hðx*i Þ is the first derivative of the hazard curve, and Dxi is the
width of the i-th subinterval (i.e., Dxi ¼ xi � xi�1). When each
subinterval has an equal width, Dxi is calculated by using Eq. (3):

Dxi ¼Dx ¼ b� a
N

(3)

The present study focuses on the case in which the subintervals
are equally spaced, and the midpoints of subintervals are selected
for the Riemann sum [16].

The hazard curve is generally a monotonically decreasing curve
[17]. It describes the exceedance frequency of the seismic event
versus peak ground acceleration. In the fragility curve, the failure
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probability of an SSC increases curve as with the increase in ground
motion level [18]. With reference to Kennedy [5,15], the hazard
curve is assumed to be given by Eq. (4):

HðxÞ¼KIx
�KH (4)

where KI is a constant, and KH is the slope parameter.
Meanwhile, the fragility curve is given by Eq. (5):

FðxÞ¼F

�
lnðxÞ � lnðAmÞ

bc

�
(5)

where Fð $Þ is the cumulative distribution function of a standard
normal distribution, Am is the median ground motion level capac-
ity, and bc is the composite variability. The latter is calculated by the
root-sum-of-squares of the logarithmic standard deviations rep-
resenting the random uncertainty (br) and the systematic or

modeling uncertainty (bu), i.e. bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2r þ b2u

q
.

Finally, the integrand in Eq. (1) is defined as GðxÞ, and is given by
Eq. (6):

GðxÞ¼ � hðxiÞFðxiÞ¼KHKIx
�KH�1F

�
lnðxÞ � lnðAmÞ

bc

�
(6)

Typical hazard and fragility curves are shown in Fig. 1, and the
GðxÞ is plotted in Fig. 2. The latter is seen to possess two convex
regions and one concave region. These are closely related to
whether the seismic risk is underestimated or overestimated when
the number of subintervals is small, as discussed in detail in Section
2.2. In addition, plots of GðxÞwith varying AM and bC are presented
in Figs. 3 and 4, respectively.�
KI ¼10�6;KH ¼ 1

logð3Þ;Am ¼0:5;br ¼bu ¼0:35
�

�
KI ¼10�6;KH ¼ 1

logð3Þ;br ¼bu ¼0:35
�

�
KI ¼10�6;KH ¼ 1

logð3Þ;Am ¼0:5
�

2.2. The effects of a small number of subintervals upon the results of
seismic risk quantification

Using the GðxÞ given in Eq. (6), the seismic risk given in Eq. (2)
can be rewritten as Eq. (7):



Fig. 2. The integrand (GðxÞ) of the typical hazard and fragility curves shown in Fig. 1.

Fig. 3. The integrand (GðxÞ) of the hazard and fragility curves depending on Am .
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Pz
XN
i¼1

G
�
aþð2i� 1Þ

2
Dx
�
Dx¼

XN
i¼1

G
�
aþð2i� 1Þðb� aÞ

2N

� ðb� aÞ
N

(7)

When the groundmotion level interval is discretized into 2n and
2nþ1 subintervals, the seismic risk is given as Eqns. (8) and (9),
respectively:
Fig. 4. The integrand (GðxÞ) of the hazard and fragility curves depending on bc .
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P1 ¼
X2n

i¼1

G
�
aþð2i� 1Þðb� aÞ

2nþ1

� ðb� aÞ
2n

(8)

P2 ¼
X2nþ1

j¼1

G
�
aþð2j� 1Þðb� aÞ

2nþ2

� ðb� aÞ
2nþ1 (9)

To facilitate a comparison of Eqns. (8) and (9), Eq. (9) is written
as Eq. (10):

P2 ¼
X2n

i¼1

�
G
�
aþð2ð2i� 1Þ � 1Þðb� aÞ

2nþ2

�

þG
�
aþð2ð2iÞ � 1Þðb� aÞ

2nþ2

�� ðb� aÞ
2nþ1

(10)

As shown in Fig. 2, GðxÞ has two convex regions and one concave
region. For the convex regions, the definition of the midpoint-
convex [19] satisfies Eq. (11), i.e. the value of the function at the
midpoint is not greater than the average of its values at the
endpoints:

X2n

i¼1

1
2

�
G
�
aþð2ð2i�1Þ�1Þðb�aÞ

2nþ2

�
þG
�
aþð2ð2iÞ�1Þðb�aÞ

2nþ2

��

ðb�aÞ
2nþ1 >

X2n

i¼1

G
�
1
2

�
aþð2ð2i�1Þ�1Þðb�aÞ

2nþ2 þa

þð2ð2iÞ�1Þðb�aÞ
2nþ2

�� ðb�aÞ
2nþ1

(11)

Multiplying both sides of Eq. (11) by 2 generates the simplified
Eq. (12):

P2 ¼
X2n

i¼1

�
G
�
aþð2ð2i� 1Þ � 1Þðb� aÞ

2nþ2

�

þG
�
aþð2ð2iÞ � 1Þðb� aÞ

2nþ2

�� ðb� aÞ
2nþ1 >

X2n

i¼1

G
�
aþð2i� 1Þðb� aÞ

2nþ1

� ðb� aÞ
2n

¼ P1

(12)

The right-hand term of Eq. (12) is equal to P1 in Eq. (8), i.e., the
seismic risk when the ground motion level interval is discretized
into 2n subintervals. The left-hand term of Eq. (12) is equal to P2 in
Eq. (10), i.e., the seismic risk when the ground motion level interval
is discretized into 2nþ1 subintervals. This means that the seismic
risk with 2nþ1 subintervals is always greater than the seismic risk
with 2n subintervals. This indicates that the seismic risk is under-
estimated when using a smaller number of subintervals in the
convex regions.

Similarly, it can be shown that the seismic risk is overestimated
when using a small number of subintervals in the concave region,
as shown in Eq. (13):

P2 ¼
X2n

i¼1

G
�
aþð2ð2i� 1Þ � 1Þðb� aÞ

2nþ2

�

þG
�
aþð2ð2iÞ � 1Þðb� aÞ

2nþ2

� ðb� aÞ
2nþ1 <

X2n

i¼1

G
�
aþð2i� 1Þðb� aÞ

2nþ1

� ðb� aÞ
2n

¼ P1

(13)
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In the seismic PSA community, it has been generally believed
that a small number of subintervals results in a conservative
seismic risk quantification. However, Eqns. (12) and (13) show that
this is only true in the concave region, not in the convex regions.
Hence, a method is provided for identifying the boundaries be-
tween overestimation and underestimation of seismic risk when
using a small number of subintervals in Section 3.
3. Boudaries between underestimation and overestimation

When using a small number of subintervals, the analysis in
Section 2 indicated that the seismic risk, i.e., the integral of GðxÞ, can
be overestimated in the convex regions, and underestimated in the
concave region. The boundaries between the convex and concave
regions of GðxÞ are the inflection points, which can be obtained by
using Eq. (14):

G
00 ðxÞ¼ðKHþ2ÞðKHþ1ÞKHKIx

�KH�31
2

�
1þerf

�
lnðxÞ� lnðAmÞffiffiffi

2
p

bc

��

�ðKHþ1ÞKHKIx
�KH�2 1

xbc
ffiffiffiffiffiffi
2p

p exp

 
�ðlnðxÞ� lnðAmÞÞ2

2b2c

!

�ðKHþ1ÞKHKIx
�KH�2 1

xbc
ffiffiffiffiffiffi
2p

p exp

 
�ðlnðxÞ� lnðAmÞÞ2

2b2c

!

�KHKIx
�KH�1 1

x2bc
ffiffiffiffiffiffi
2p

p
�
1þ lnðxÞ� lnðAmÞ

b2c

�

exp

 
�ðlnðxÞ� lnðAmÞÞ2

2b2c

!

(14)

By introducing the factor t, Eq. (14) can be simplified to give Eq.
(15):

gðtÞ¼C1ð1þ erfðtÞÞ �
	
C2 þ

ffiffiffi
2

p
t


exp

	
�t2



(15)

where:

t¼ lnðxÞ � lnðAmÞffiffiffi
2

p
bc

erfðtÞ¼
ðt
0

e�x2dx

C1 ¼ b2c
ffiffiffiffiffiffi
2p

p
ðKH þ2ÞðKH þ1Þ1

2

C2 ¼2bcKH þ 3bc

Because Eq. (15) is a continuous and differentiable function, it
can be solved by using numerical methods such as the Newton
Raphson method [20]. However, while the Newton Raphson
method provides rapid convergence, an appropriate solution may
not be found with a poor initial value. Therefore, it is important to
determine appropriate initial values.

The value of GðxÞ at the midpoint of the i-th subinterval (i ¼ 1;
/;N) is given by Eq. (16):

Gmid;i ¼G
	xi�1 þ xi

2



¼G

�
aþ2i� 1

2
Dx
�

(16)

In the convex and concave regions, Eqns. (17) and (18) hold,
respectively:
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Gðxi�1Þ þ GðxiÞ
2

>G
	xi�1 þ xi

2



(17)

Gðxi�1Þ þ GðxiÞ
2

<G
	xi�1 þ xi

2



(18)

By examining the values of GðxiÞ (i ¼ 0;/;N), it is possible to
identify the subintervals in which the inequality changes from Eq.
(17) to Eq. (18), and vice versa. Since the values of xi are located near
the inflection points, they can be used as initial values to find the
boundaries between the regions of underestimation and over-
estimation via the Newton Raphson method by finding the roots of
gðtÞ ¼ 0. First, the given value of xi must be converted into t0 using
the relation in Eq. (19):

t0 ¼
lnðxiÞ � lnðAmÞffiffiffi

2
p

bc
(19)

The Newton Raphson method is a numerical method for
obtaining the roots of an equation by using a tangent line and x-
axis. Starting from the t0 given in Eq. (19), iteration continues with
Eq. (20):

tnþ1 ¼ tn � gðtnÞ
g0ðtnÞ (20)

until tnþ1 sufficiently converges to the root of the equation gðtÞ ¼ 0.
A flowchart for identifying the boundaries between underesti-

mation and overestimation via the Newton Raphson method is
presented in Fig. 5. First, inputs such as those for the hazard data (KI ;

KH), the fragility data (Am;br ;bu), and the ground motion level in-
terval are prepared, along with the end conditions such as the error
limit and the maximum number of iterations. After dividing the
ground motion level into N subintervals, the initial values of xi are
obtained by examining the values of GðxiÞ and converting them to t0
values. The blue part of Fig. 5 shows the procedure for finding the
initial values, while the green part shows the application of the
Newton Raphson method to obtain the numerical solutions of the
equation gðtÞ ¼ 0. As g0ðtnÞ is used in Eq. (20), its value should not
be zero; hence, it is necessary to avoid tc given in Eq. (21):

tc ¼±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
2
ffiffiffiffiffiffi
2p

p
� 8C1 þ 4

ffiffiffiffiffiffi
2p

p

8
ffiffiffiffiffiffi
2p

p
s

�
ffiffiffi
2

p
C2
4

(21)

If tn is not equal to tc, iterations using Eq. (20) may proceed until
tnþ1 � tn is less than a specified error limit, or until a specified
maximum number of iterations is exceeded.

If ta;1 and ta;2 are found as the two roots of gðtÞ ¼ 0, they need to
be converted to ground motion levels xa;1 and xa;2 as given by Eq.
(22):

xa;j ¼Am exp
	 ffiffiffi

2
p

bcta;j



(22)

These ground motion levels are the boundaries between the
regions of overestimation and underestimation when using a small
number of subintervals.
4. Example

In this section, an example is considered for the hazard curve
(HðxÞ) with KI ¼ 10�6;KH ¼ 1

logð3Þ and the fragility curve (FðxÞ) with

Am ¼ 0:5g; br ¼ bu ¼ 0:35 shown in Fig. 1, and the corresponding
integrand (GðxÞ) in Eq. (1), which is shown in Fig. 2. The variables in
the example are set to properly represent the usual range of those



Fig. 5. A flowchart for finding the boundaries between the regions of overestimation and underestimation.
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variables. Here, the ground motion level interval is from 0.05 to
1.05 g, and is evenly divided into 24 subintervals. From the nu-
merical values of GðxiÞ, the subintervals in which the inequality
changes from Eq. (17) to Eq. (18) and vice versa are found to be that
from 0.1125 to 0.1750 g, and that from 0.4250 to 0.4875 g, respec-
tively. Themidpoint values of these two subintervals are selected as
the initial values, and the Newton Raphson method is applied to
1424
obtain the overestimation and underestimation boundaries as
0.1497 and 0.4555 g, respectively. In the groundmotion level ranges
of 0e0.1497 g and 0.4555e1.05 g, GðxÞ is convex and, hence a small
number of subintervals will result in an underestimation of the
seismic risk. However, in the ground motion level range of
0.1497e0.4555 g, GðxÞ is concave and, hence, a small number of
subintervals will result in an overestimation of the seismic risk. In
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all regions, the seismic risk estimation approaches the correct value
as the number of subintervals increases. When the number of
subintervals (N) for each region is varied as 2n�1 (n ¼ 1;2;/;10),
the calculated seismic risks (Eq. (7)) in the two convex underesti-
mation regions are as shown in Fig. 6, and those in the over-
estimation region are as shown in Fig. 7.

The sum of the seismic risks over all three regions obtained
while varying the right-hand endpoint of the ground motion level
interval (b) is shown in Fig. 8, and that obtained while varying Am is
shown in Fig. 9. The overestimation or underestimation of seismic
risk when a small number of subintervals are used mainly depends
on where the overestimation and underestimation regions exist in
the ground motion level interval for seismic risk quantification. The
right-hand endpoint (b) determines the ground motion level in-
terval, and the location of the overestimation and underestimation
regions is largely affected by the median (Am) of the fragility curve.
Therefore, Am and b are considered to be two most important
variables in determining whether the seismic risk is overestimated
or underestimated when a small number of subintervals are used
for seismic risk quantification. In Figs. 8 and 9, the four b's (0.55,
1.05, 1.55, and 2.05) and the two Am’s (0.2 and 0.6) are selected to
properly demonstrate the overestimation and underestimation of
seismic risk when a small number of subintervals are used.

Here, each of the three regions is discretized into 2n�1 (n ¼ 1;2;
/; 10) subintervals, and the seismic risk quantification is clearly
affected by the contributions from the underestimation and over-
estimation regions. In Fig. 8, because the boundary between over-
estimation and underestimation is 0.4555 g, the underestimation
region widens as the ground motion level interval widens, while
the overestimation region remains unchanged. Therefore, the
seismic risk contribution from the underestimation region in-
creases and, hence, it becomes more likely that the seismic risk is
underestimated when using a small number of subintervals for
each region. Fig. 8 demonstrates that the seismic risk is over-
estimated with a small number of subintervals when b ¼ 0:55 and
1:05, and underestimated when b ¼ 1:55 and 2:05. Fig. 9 demon-
strates that the seismic risk is underestimated with a small number
of subintervals when Am ¼ 0:2 and overestimated when Am ¼ 0:6.

From Eq. (22), the boundaries between underestimation and
overestimation (xa;1 and xa;2) are proportional to Am, and so is the
overestimation region, which lies between them, as indicated by
Eq. (23):

Dxa;i ¼
��xa;1 � xa;2

��¼ ���Am

	
exp

	 ffiffiffi
2

p
bcta;1



� exp

	 ffiffiffi
2

p
bcta;2



���
(23)
Fig. 6. The calculated seismic risk in the two convex underestimation regions as a
function of the number of subintervals.
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The function GðxÞ, and the boundaries (xa;1 and xa;2), for various
Am values are shown in Fig. 10. Here, the boundaries are seen to
increase as Am increases; hence, the overestimation region shifts to
the right. As a result, the seismic risk tends to be overestimated
when using a small number of subintervals, as shown in Fig. 9.

The seismic risk quantification results when the ground motion
level interval is discretized into 1, 21, 22, /, 29 subintervals while
varying the right-hand endpoint (b) and the median capacity (Am)
are indicated in Figs. 11 and 12, respectively. Unlike Figs. 8 and 9,
the seismic risks in Figs. 11 and 12 are quantified without consid-
eration of the boundaries of the three regions (underestimation and
overestimation) and hence, this approach is closer to the current
practice of quantifying the seismic risk. Because GðxÞ has two
boundaries between underestimation and overestimation, the
seismic risk quantification result with a small number of sub-
intervals is heavily affected by the locations of these boundaries.
Thus, in Figs. 8 and 9 above, a continuous increase or decrease in
the quantified seismic risk was observed as the number of sub-
intervals increased, whereas Figs. 11 and 12 each show an initial
increase in seismic risk, followed by a decreasewhen the number of
subintervals is small. As the right-hand endpoint of the ground
motion level interval (b) increases, or Am decreases, the underes-
timation region gets wider and, hence, the risk contribution from
the underestimation region increases. Consequently, the seismic
risk may be underestimated when the number of subintervals is
small (e.g. one or two), as can be seen when b ¼ 1:55 and b ¼ 2:05.
However, as the number of subintervals increases, the seismic risk
tends to be overestimated while gradually converging to the exact
value. Conversely, when the right-hand endpoint of the ground
motion level interval (b) decreases, or Am increases, the risk
contribution from the overestimation region increases and, hence,
the seismic risk tends to be overestimated.
5. Discussion

The discretization of the groundmotion level interval into a small
number of subintervals (usually around or less than five sub-
intervals) has been widely used in seismic risk quantification to
reduce the quantification burden, with the assumption that a small
number of subintervals leads to a conservative quantification result.
In the present study, however, a mathematical analysis has
demonstrated that the seismic risk can be underestimated in some
regions when using a small number of subintervals. Indeed, the ef-
fect of a small number of subintervals upon the results of seismic risk
quantification is complicated, especially when the ground motion
Fig. 7. The calculated seismic risk in the concave overestimation region as a function of
the number of subintervals.



Fig. 8. The calculated seismic risk while varying the right-hand endpoint of the ground
motion level interval.

Fig. 9. The calculated seismic risk as a function of the number of subintervals while
varying Am .

Fig. 10. The boundaries between underestimation and overestimation while varying
Am .

Fig. 11. The seismic risk for the ground motion level interval while varying b.
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level interval is discretized without consideration of the boundaries
between underestimation and overestimation. If the median ca-
pacity (Am) is significantly smaller, or significantly larger, than the
ground motion level interval, then the seismic risk may be under-
estimated when using a small number of ground motion level in-
tervals. In such cases, it is likely that the analyzed ground motion
level interval is dominated by the convex region of the hazard and
fragility convolution curve. However, in practice, the risk contribu-
tion from the overestimation region is generally large and, therefore,
it is likely that the seismic risk is overestimated when using a small
number of ground motion level intervals. Nevertheless, conservative
seismic risk quantification results are generally expected, evenwhen
the groundmotion level interval is discretized into a small number of
subintervals, and this widely-used assumption in seismic PSA is
generally true except for certain extreme cases.

In brief, due to the lack of background information for deter-
mining the number of subintervals in seismic PSA, it has been
believed that a small number of subintervals will yield a conser-
vative seismic risk quantification result. The present study has
demonstrated the possibility of seismic risk underestimation when
using a small number of subintervals. Although the possibility of
underestimation may not be significant in practice, it is recom-
mended that the ground motion level interval be discretized into a
sufficient number of subintervals (usually more than ten sub-
intervals) to avoid the possible underestimation and reduce any
unnecessary error in the quantification of seismic risk.
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To be exact, the length of subintervals has greater impact on the
seismic risk quantification results than the number of subintervals.
However, when the ground motion level interval for seismic risk
quantification is fixed, how many subintervals the ground motion
level interval is divided into (i.e. the number of subintervals) is
directed related to the length of each subinterval. In this sense, a
small number of subintervals is meant to be synonymous with a
large length of each subinterval in this paper.

A small number of subintervals results in less accurate seismic
risk quantification result, while whether such quantification result
is optimistic or conservative is determined by where the three re-
gions of underestimation and overestimation are placed in the
ground motion level interval for seismic risk quantification.
Depending onwhether the groundmotion level interval for seismic
risk quantification is dominated by underestimation or over-
estimation regions, the seismic risk quantification result becomes
optimistic or conservative. As the number of subintervals increases,
the seismic risk quantification result becomes less optimistic or less
conservative, and then becomes closer to the exact result.
6. Conclusions

A closed form of the seismic risk for the specific ground motion
level is difficult to derive because it is evaluated by convolution of
the hazard and fragility curves. Recently, the seismic risk



Fig. 12. The seismic risk for the ground motion level interval while varying Am .
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quantification with discretized ground motion level subintervals
has become widely used. If the number of ground motion level
subintervals is sufficient, the result of seismic risk quantification
converges to an accurate value. However, the number of ground
motion level subintervals for use in seismic PSA quantification is
limited in practice. For this reason, it is necessary to understand the
effects of using a small number of groundmotion level subintervals
upon the results of seismic risk quantification.

In the present study, the seismic risk quantification method
with discretized ground motion level subintervals was analyzed to
find that the quantification results can be underestimated in the
convex region, and overestimated in the concave region, of the
convolution of the hazard and fragility curves when using a small
number of ground motion level subintervals. In view of the
importance of avoiding any unintended underestimation of the
seismic risk to nuclear plants, this finding is highly important to
PSA analysts.

Further, the present study identified two boundaries between
underestimation and overestimation, and provided a method for
finding them. Moreover, the risk contribution from the over-
estimation region was found to be more significant than that from
the underestimation regions in most practical applications. Un-
derestimation in one region is usually compensated by over-
estimation in another region. Accordingly, PSA analysts must take
care to avoid underestimation when quantifying the seismic risk in
a specific localized region of the hazard and fragility convolution
curve wherein the seismic risk can be underestimated.

In brief, the present study has revealed the possibility of
underestimating seismic risk, and has provided a method for
identifying the boundaries between underestimation and over-
estimation regions in order to assist in avoiding unintentional un-
derestimation. This paper is expected to contribute towards
widening the understanding of how the use of a small number of
ground motion level subintervals affects the results of seismic risk
quantification, and how to avoid any possible underestimation of
the seismic risk for a nuclear power plant.
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