• Title/Summary/Keyword: Legendre-Gauss-Lobatto

Search Result 17, Processing Time 0.025 seconds

Study on The Stiffness Locking Phenomenon and Eigen Problem in Mindlin Plate (Mindlin 판의 강성 과잉 현상과 고유치에 관한 연구)

  • 김용우;박춘수;민옥기
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.445-454
    • /
    • 1991
  • In this thesis, Mindlin plate element with nine nodes and three degrees-of-freedom at each node is formulated and is employed in eigen-analysis of a rectangular plates in order to alleviate locking phenomenon of eigenvalues. Eigenvalues and their modes may be locked if conventional $C_{0}$-isoparametric element is used. In order to reduce stiffness locking phenomenon, two methods (1, the general reduced and selective integration, 2, the new element that use of modified shape function) are studied. Additionally in order to reduce the error due to mass matrix, two mass matrixes (1, Gauss-Legendre mass matrix, 2, Gauss-Lobatto mass matrix) are considered. The results of eigen-analysis for two models (the square plate with all edges simply-supported and all edges built-in), computed by two methods for stiffness matrix and by two mass matrixes are compared with theoretical solutions and conventional numerical solutions. These comparisons show that the performance of the two methods with Gauss-Lobatto mass matrix is better than that of the conventional plate element. But, by considering the spurious rigid body motions, the element which employs modified shape function with full integration and Gauss-Lobatto mass matrix can elevate the accuracy and convergence of numerical solutions.

Neighboring Optimal Control using Pseudospectral Legendre Method (Pseudospectral Legendre법을 이용한 근접 최적 제어)

  • 이대우;조겸래
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.7
    • /
    • pp.76-82
    • /
    • 2004
  • The solutions of neighboring optimal control are typically obtained using the sweep method or transition matrices. Due to the numerical integration, however, the gain matrix can become infinite as time go to final one in the transition matrices, and the Riccati solution can become infinite when the final time free. To overcome these disadvantages, this paper proposes the pseudospectral Legendre method which is to first discreteize the linear boundary value problem using the global orthogonal polynomial, then transforms into an algebraic equations. Because this method is not necessary to take any integration of transition matrix or Riccati equation, it can be usefully used in real-time operation. Finally, its performance is verified by the numerical example for the space vehicle's orbit transfer.

Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods

  • Ghannadpour, S.A.M.;Shakeri, M.;Barvaj, A. Kurkaani
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.785-802
    • /
    • 2018
  • In this paper, two different computational methods, called Rayleigh-Ritz and collocation are developed to estimate the ultimate strength of composite plates. Progressive damage behavior of moderately thick composite laminated plates is studied under in-plane compressive load and uniform lateral pressure. The formulations of both methods are based on the concept of the principle of minimum potential energy. First order shear deformation theory and the assumption of large deflections are used to develop the equilibrium equations of laminated plates. Therefore, Newton-Raphson technique will be used to solve the obtained system of nonlinear algebraic equations. In Rayleigh-Ritz method, two degradation models called complete and region degradation models are used to estimate the degradation zone around the failure location. In the second method, a new energy based collocation technique is introduced in which the domain of the plate is discretized into the Legendre-Gauss-Lobatto points. In this new method, in addition to the two previous models, the new model named node degradation model will also be used in which the material properties of the area just around the failed node are reduced. To predict the failure location, Hashin failure criteria have been used and the corresponding material properties of the failed zone are reduced instantaneously. Approximation of the displacement fields is performed by suitable harmonic functions in the Rayleigh-Ritz method and by Legendre basis functions (LBFs) in the second method. Finally, the results will be calculated and discussions will be conducted on the methods.

Trajectory Optimization for a Supersonic Air-Breathing Missile System Using Pseudo-Spectral Method

  • Park, Jung-Woo;Tahk, Min-Jea;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.112-121
    • /
    • 2009
  • This paper deals with supersonic air-breathing missile system. A supersonic air-breathing missile system has very complicated and incoherent thrust characteristics with respect to outer and inner environment during operation. For this reason, the missile system has many maneuver constraints and is allowed to operate within narrow flight envelope. In this paper, trajectory optimization of the missile is accomplished. The trajectory optimization problem is formulated as a discrete parameter optimization problem. For this formulation, Legendre Pseudo-Spectral method is introduced. This method is based on calculating the state and control variables on Legendre-Gauss-Lobatto (LGL) points. This approach helps to find approximated derivative and integration quantities simply. It is shown that, for this trajectory optimization, trend analysis is performed from thrust characteristics on various conditions so that the trajectory optimization is accomplished with fine initial guess with these results.

Application of ADE-PML Boundary Condition to SEM using Variational Formulation of Velocity-Stress 3D Wave Equation (속도-응력 변분식을 이용한 3차원 SEM 탄성파 수치 모사에 대한 ADE-PML경계조건의 적용)

  • Cho, Chang-Soo;Son, Min-Kyung
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Various numerical methods in simulation of seismic wave propagation have been developed. Recently an innovative numerical method called as the Spectral Element Method (SEM) has been developed and used in wave propagation in 3-D elastic media. The SEM that easily implements the free surface of topography combines the flexibility of a finite element method with the accuracy of a spectral method. It is generally used a weak formulation of the equation of motion which are solved on a mesh of hexahedral elements based on the Gauss-Lobatto-Legendre integration rule. Variational formulations of velocity-stress motion are newly modified in order to implement ADE-PML (Auxiliary Differential Equation of Perfectly Matched Layer) in wave propagation in 3-D elastic media, because a general weak formulation has a difficulty in adapting CFS (Complex Frequency Shifted) PML (Perfectly Matched Layer). SEM of Velocity-Stress motion having ADE-PML that is very efficient in absorbing waves reflected from finite boundary is verified with simulation of 1-D and 3-D wave propagation.

Nonlinear spectral collocation analysis of imperfect functionally graded plates under end-shortening

  • Ghannadpour, S. Amir M.;Kiani, Payam
    • Structural Engineering and Mechanics
    • /
    • v.66 no.5
    • /
    • pp.557-568
    • /
    • 2018
  • An investigation is made in the present work on the post-buckling and geometrically nonlinear behaviors of moderately thick perfect and imperfect rectangular plates made-up of functionally graded materials. Spectral collocation approach based on Legendre basis functions is developed to analyze the functionally graded plates while they are subjected to end-shortening strain. The material properties in this study are varied through the thickness according to the simple power law distribution. The fundamental equations for moderately thick rectangular plates are derived using first order shear deformation plate theory and taking into account both geometric nonlinearity and initial geometric imperfections. In the current study, the domain of interest is discretized with Legendre-Gauss-Lobatto nodes. The equilibrium equations will be obtained by discretizing the Von-Karman's equilibrium equations and also boundary conditions with finite Legendre basis functions that are substituted into the displacement fields. Due to effect of geometric nonlinearity, the final set of equilibrium equations is nonlinear and therefore the quadratic extrapolation technique is used to solve them. Since the number of equations in this approach will always be more than the number of unknown coefficients, the least squares technique will be used. Finally, the effects of boundary conditions, initial geometric imperfection and material properties are investigated and discussed to demonstrate the validity and capability of proposed method.

An efficient technique to generate reusable matrix to solve a problem in the engineering field (공학문제 해결을 위한 프로그램에서의 재사용이 가능한 Matrix의 효율적 자동생성기법)

  • Lee, Mi-Young
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1145-1148
    • /
    • 2003
  • We show the mixed finite element method which induces solutions that has the same order of errors for both the gradient of the solution and the solution itself. The technique to construct an efficient reusable matrix is suggested. Two families of mixed finite element methods are introduced with an automatic generating technique for matrix with my order of basis. The generated matrix by this technique has more accurate values and is a sparse matrix. This new technique is applied to solve a minimal surface problem.

PRECONDITIONED SPECTRAL COLLOCATION METHOD ON CURVED ELEMENT DOMAINS USING THE GORDON-HALL TRANSFORMATION

  • Kim, Sang Dong;Hessari, Peyman;Shin, Byeong-Chun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.595-612
    • /
    • 2014
  • The spectral collocation method for a second order elliptic boundary value problem on a domain ${\Omega}$ with curved boundaries is studied using the Gordon and Hall transformation which enables us to have a transformed elliptic problem and a square domain S = [0, h] ${\times}$ [0, h], h > 0. The preconditioned system of the spectral collocation approximation based on Legendre-Gauss-Lobatto points by the matrix based on piecewise bilinear finite element discretizations is shown to have the high order accuracy of convergence and the efficiency of the finite element preconditioner.

p-Version Finite Element Analysis of Anisotropic Laminated Plates considering Material-Geometric Nonlinearities (재료-기하비선형을 고려한 이방성 적층평판의 p-Version 유한요소해석)

  • 홍종현;박진환;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.319-326
    • /
    • 2002
  • A p-version finite element model based on degenerate shell element is proposed for the analysis of orthotropic laminated plates. In the nonlinear formulation of the model, the total Lagrangian formulation is adopted with large deflection and moderate rotation being accounted for in the sense of von Karman hypothesis. The material model Is based on the Huber-Mises yield criterion and Prandtl-Reuss flow rule in accordance with the theory of strain hardening yield function, which is generalized for anisotropic materials by introducing the parameters of anisotropy. The model is also based on extension of equivalent-single layer laminate theory(ESL theory) with shear deformation, leading to continuous shear strain at the interface of two layers. The Integrals of Legendre Polynomials we used for shape functions with p-level varying from 1 to 10. Gauss-Lobatto numerical quadrature is used to calculate the stresses at the nodal points instead of Gauss points. The validity of the proposed p-version finite element model is demonstrated through several comparative points of view in terms of ultimate load, convergence characteristics, nonlinear effect, and shape of plastic zone

  • PDF

Explicit Transient Simulation of SH-waves Using a Spectral Element Method (스펙트럴 요소법을 이용한 SH파 전파의 외연적 시간이력해석)

  • Youn, Seungwook;Kang, Jun Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.87-95
    • /
    • 2018
  • This paper introduces a new explicit spectral element method for the simulation of SH-waves in semi-infinite domains. To simulate the wave motion in unbounded domains, it is necessary to reduce the infinite extent to a finite computational domain of interest. To prevent the wave reflection from the trunctated boundaries, perfectly matched layer(PML) wave-absorbing boundary is introduced. The forward problem for simulating SH-waves in PML-truncated domains can be formulated as second-order PDEs. The second-order semi-discrete form of the governing PDEs is constructed by using a mixed spectral elements with Legendre-gauss-Lobatto quadrature method, which results in a diagonalized mass matrix. Then the second-order semi-discrete form is transformed to a first-order, whose solutions are calculated by the fourth-order Runge-Kutta method. Numerical examples showed that solutions of SH-wave in the two-dimensional analysis domain resulted in stable and accurate, and reflections from truncated boundaries could be reduced by using PML boundaries. Elastic wave propagation analysis using explicit time integration method may be apt for solving larger domain problems such as three-dimensional elastic wave problem more efficiently.