• Title/Summary/Keyword: Learning-centered class

Search Result 263, Processing Time 0.023 seconds

Application of the KTOP (Korean Teaching Observation Protocol) for Observing and Improving Science Teaching in Teaching Practicum (교육실습에서 과학수업의 관찰과 개선을 위한 KTOP (Korean Teaching Observation Protocol)의 활용)

  • Kim, Sujung;Park, Jongwon
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.6
    • /
    • pp.961-970
    • /
    • 2017
  • In this study, KTOP (Korean Teaching Observation Protocol) was applied to teaching practicum for improving pre-service teachers' science teaching. To do this, four pre-service teachers and supervisor teacher observed and analyzed the lessons using the KTOP, and tried to improve he succeeding lessons through collaboration activities. As a result, the pre-service teachers conducted the collaboration activities based on the lesson analysis using the KTOP, therefore it was concluded that the KTOP took a practical role of guidance for improving pre-service science teachers' teaching. And it was found that the collaboration activities using the KTOP helped the improvement of the succeeding lesson, however, more iterative application is necessary for more effective improvement of teaching. Based on the analysis of questionnaire, observation, and interview, it was found that pre-service teachers need to be confident about the use of the KTOP and strive to become a student-centered lesson. And, the KTOP needs to be modified by reducing the number of items and as a more convenient form. Finally, it was inferred that we need to give an effort to help students recognize that learning should be self-directed.

Development of Open Set Recognition-based Multiple Damage Recognition Model for Bridge Structure Damage Detection (교량 구조물 손상탐지를 위한 Open Set Recognition 기반 다중손상 인식 모델 개발)

  • Kim, Young-Nam;Cho, Jun-Sang;Kim, Jun-Kyeong;Kim, Moon-Hyun;Kim, Jin-Pyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.117-126
    • /
    • 2022
  • Currently, the number of bridge structures in Korea is continuously increasing and enlarged, and the number of old bridges that have been in service for more than 30 years is also steadily increasing. Bridge aging is being treated as a serious social problem not only in Korea but also around the world, and the existing manpower-centered inspection method is revealing its limitations. Recently, various bridge damage detection studies using deep learning-based image processing algorithms have been conducted, but due to the limitations of the bridge damage data set, most of the bridge damage detection studies are mainly limited to one type of crack, which is also based on a close set classification model. As a detection method, when applied to an actual bridge image, a serious misrecognition problem may occur due to input images of an unknown class such as a background or other objects. In this study, five types of bridge damage including crack were defined and a data set was built, trained as a deep learning model, and an open set recognition-based bridge multiple damage recognition model applied with OpenMax algorithm was constructed. And after performing classification and recognition performance evaluation on the open set including untrained images, the results were analyzed.

A Case Study(II) on Development and Application of 'Literature-Art-Science' Integrated Education Programs ('문학-미술-과학' 융합교육 프로그램의 개발 및 적용 사례 연구(II))

  • Choi, Byung Kil
    • Korea Science and Art Forum
    • /
    • v.32
    • /
    • pp.319-334
    • /
    • 2018
  • This research is a case study to make sure the enhancement of students' imagination and creativity through developing and applying the Literature-Art-Science Integrated Education Program. Its research object was totally 25 persons of 29 students of the 1st to the 4 th Grades from Gunsan Sulsan Elementary School. Its research period lasted for 4 months from September to December, 2017, and I, as the research place, used the art room at Gunsan Sulsan Elementary School. The programs were totally 10 sessions with a unit of 1 session per each grade for 2 hours from 1:00 to 3:00 in the afternoon from Monday through Friday. I fixed ten themes of this program-eight plane modeling, and two solid modeling, and finished the work of storytelling during summer vacation. And I arranged their levels as low:middle:high(3:5:2) ones. The former was 'A Film of Monster Gorilla'(L), 'Learning the Spirit of Gyeongju Choi's Family'(M), 'A Tale of My Friend Made of Natural Materials'(L), 'The Reading of My Dream'(M), 'Gathering the Objects in My Mobile'(M), 'A Mock Trial of Marrying Off'(M), 'Painting My Favorite Children's Poem'(H), and 'Painting My Favorite Children's Song'(H), and the latter was 'Seeking for a Bluebird in My Mind'(L), and 'Making My Cherished Object' (M). Then I used the unique art expression technique per each theme, which were in sequence marbling, Korean paper art, combine painting, collage, imaginary painting, imaginary painting, play dough art, imaginary painting techniques. And I delivered to the students the scientific knowledge in terms of growing or manufacturing processes of materials used for making artworks. Prior to and after the processing this program, I surveyed about the students' ability of integrated thinking and emotional experience by 'Figure B Type' and 'Figure A Type' of The Torrance Tests of Creative Thinking, and took statistics with the resultant data. And I executed a paired t-test in order to verify the significance of mean difference in the result of investigation with those data. From the analyzed result according to the elements of creativity and the mean quotients of creativity, there showed a significant difference (t=3.47, p<.01) in 'fluency', and also a significant difference(t=3.59, p<.01) in 'creativity.' Judging from the statistic values of two fields such as the student's ability of integrated thinking and emotional experience, I estimate that over the majority of the students showed the enhancement in self-confident creative expression as well as higher interest and concern through this program. The result that I arranged and analyzed the making process of artworks, the photos of the resultant, etc. as such is as follows : Firstly, from this program being proceeded as art-centered STEAM class, the student's systematic problem-solving ability was improved in his ability of integrated thinking to transform the literary contents into artistic one. Secondly, the student obtained the emotional experience such as interest in the class, self-confidence, intellectual satisfaction, self-fulfillment, etc. through art-centered STEAM class using ten art expression techniques. Thirdly, the student's mind willing to cooperate, communicate with his friends, and care for them was ripened in the process of problem-solving. Fourth, the student's self-confidence was further instilled when presenting famous artists and their artworks in the introduction and finale of ten art expression techniques. Likewise, the statistic values on the fields of student's ability of integrated thinking and emotional experience illustrate that over the majority of the students showed improvement in the ability of creative expression with confidence as well as higher interest and concern upon this program.

A Study on the Effectiveness and Possibility of Chemistry Inquiry Programs Based on Reverse Science Principle (RSP(Reverse Science Principle)기반 화학 탐구 프로그램의 효과 및 가능성 탐색)

  • Jo, Eun-ji;Yang, Heesun;Kang, Seong-Joo
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.299-313
    • /
    • 2018
  • Inquiry-centered education is important in science education, but in the actual education field, scientific research is being done in a uniform manner due to realistic difficulties. In this study, we use RS (Reverse Science) as a secondary chemistry class to provide opportunities for students to engage in inquiry learning and scientific thinking through process-oriented activities. In this study, we developed and applied it to explore the effects on the scientific inquiry abilities of middle school students and checked the students' perception of it. For the application of the program, 128 students were selected from 6 classes of the 2nd grade in D district middle school, 64 from the experimental group and 64 from the comparative group. The experimental group taught RSP-based the chemistry inquiry programs and the comparative group taught instructor-led classes and verification experiments on the same topic over the seventh hour with three themes. In addition, we analyzed the results of the pre- and post-test by using the science inquiry ability test, and discussed the effects of the program based on the students' perceptions through class observation, student activity area, questionnaire and interview. As a result, the class using the program showed statistically significant changes in the science inquiry ability of secondary school students. Specifically, the experimental group was found to be significant in its prediction among the subcomponents of basic exploration ability compared to the comparative group. The differences have also been shown to be significant in terms of data translation, hypothesis setup and variable control, which are subcomponents of integrated exploration capabilities (p <. 05). In addition, students became interested in the process of creating the theory of science, and were highly interested in collaborating with their friends. It also provided students with opportunities to experience scientific thinking through process-oriented inquiry. Finally, based on the positive impact of the RSP-based chemistry inquiry program on students, we were able to identify the potential use of the program.

Science Teachers' Recognition of the Changing School Environment and Challenges for Teaching Practices (학교의 변화를 마주한 과학 교사들의 인식과 수업 실천에서 나타난 도전과 변화)

  • Ji, Youngrae;Shim, Hyeon-Pyo;Baek, Jongho;Park, Hyoung-Yong
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.6
    • /
    • pp.937-949
    • /
    • 2017
  • In this study, we investigated how science teachers perceive the changes in school systems, including infrastructure and curriculum, in the context of preparing for future education. And the changes in their perception of the educational environment, the challenges, and changes of science teachers' classroom practices were also explored. In-depth interviews and analysis were conducted with two science teachers in a middle school that is trying to innovative on changes compared with general schools. The results of the study are as follows: First, teachers perceived that their schools had factors that could change the science class in terms of school size and infrastructure, peer teacher culture, and students' abilities. Second, the enthusiasm of teachers who are trying various ways of teaching and the students' ability to adapt in a smart learning environment formed a synergistic circle that lowered entry barriers to trying changes. Third, science classes changed to activity-centered classes, and teachers realized that these changes promoted students' self-directed learning. Fourth, teachers perceived themselves as playing an independent role in curriculum management, and this perception promoted more varied attempts in improving their classes. Through the changes of the learning environment and systems of the school and the formation of a culture that shares their challenges and innovations with the voluntary learning community, teachers constantly try to change their classes and schools. The changes of school need to be understood in the context of the interaction of teachers, students, and infrastructure.

The Effects of Inductive Activities Using GeoGebra on the Proof Abilities and Attitudes of Mathematically Gifted Elementary Students (GeoGebra를 활용한 귀납활동이 초등수학영재의 증명능력 및 증명학습태도에 미치는 영향)

  • Kwon, Yoon Shin;Ryu, Sung Rim
    • Education of Primary School Mathematics
    • /
    • v.16 no.2
    • /
    • pp.123-145
    • /
    • 2013
  • This study was expected to yield the meaningful conclusions from the experimental group who took lessons based on inductive activities using GeoGebra at the beginning of proof learning and the comparison one who took traditional expository lessons based on deductive activities. The purpose of this study is to give some helpful suggestions for teaching proof to mathematically gifted elementary students. To attain the purpose, two research questions are established as follows. 1. Is there a significant difference in proof abilities between the experimental group who took inductive lessons using GeoGebra and comparison one who took traditional expository lessons? 2. Is there a significant difference in proof attitudes between the experimental group who took inductive lessons using GeoGebra and comparison one who took traditional expository lessons? To solve the above two research questions, they were divided into two groups, an experimental group of 10 students and a comparison group of 10 students, considering the results of gift and aptitude test, and the computer literacy among 20 elementary students that took lessons at some education institute for the gifted students located in K province after being selected in the mathematics. Special lesson based on the researcher's own lesson plan was treated to the experimental group while explanation-centered class based on the usual 8th grader's textbook was put into the comparison one. Four kinds of tests were used such as previous proof ability test, previous proof attitude test, subsequent proof ability test, and subsequent proof attitude test. One questionnaire survey was used only for experimental group. In the case of attitude toward proof test, the score of questions was calculated by 5-point Likert scale, and in the case of proof ability test was calculated by proper rating standard. The analysis of materials were performed with t-test using the SPSS V.18 statistical program. The following results have been drawn. First, experimental group who took proof lessons of inductive activities using GeoGebra as precedent activity before proving had better achievement in proof ability than the comparison group who took traditional proof lessons. Second, experimental group who took proof lessons of inductive activities using GeoGebra as precedent activity before proving had better achievement in the belief and attitude toward proof than the comparison group who took traditional proof lessons. Third, the survey about 'the effect of inductive activities using GeoGebra on the proof' shows that 100% of the students said that the activities were helpful for proof learning and that 60% of the reasons were 'because GeoGebra can help verify processes visually'. That means it gives positive effects on proof learning that students research constant character and make proposition by themselves justifying assumption and conclusion by changing figures through the function of estimation and drag in investigative software GeoGebra. In conclusion, this study may provide helpful suggestions in improving geometry education, through leading students to learn positive and active proof, connecting the learning processes such as induction based on activity using GeoGebra, simple deduction from induction(i.e. creating a proposition to distinguish between assumptions and conclusions), and formal deduction(i.e. proving).

Development and Application of Performance Assessment Materials for a Biology Unit of Middle School Science 1 (중학교 과학1 생물단원의 수행평가 도구개발과 적용)

  • Cho, Jung-Il;Yoo, Hyung-Bin;Rho, Young-Ji
    • Journal of The Korean Association For Science Education
    • /
    • v.20 no.3
    • /
    • pp.384-395
    • /
    • 2000
  • Recently performance assessments have been recommended as an alternative to traditional assessment methods such as multiple-choice written test. Performance assessment is suggested to facilitate students' creativity, participation and learning motivations in science classes. In this study, performance assessment materials were developed for a biology unit of middle school science 1, 'Plants Around Us', and then the assessment materials were applied to assess students' understandings and attitudes related to each topic of the unit. A total of 186 7th grade students at a southern large city participated in this study. From the study, the following were obtained: 1. Various type of the performance assessment materials, such as observation report, peer evaluation, interview have been developed for the unit 'Plants around us.' 2. Students' understandings on the topics appeared to be sound, and the students' interest and cooperative problem-solving abilities have been cultivated through the small group activities. The science classes became more student-centered. 3. Teacher's burden has increased due to the practices of performance assessment, but it could be handled by teacher's commitment and management skills. 4. The students' responses to performance assessments were positive, in general.

  • PDF

An analytical Study of The Middle School Home Economics Instructions I - Centering on Development of Checklist for Observing and Analytical framwork- (중학교 가정 교과 수업 분석 연구 I - 수업 관찰 체크리스트와 분석 틀 개발을 중심으로 -)

  • Yoon In-Kyung;Lee Soo-Jeong
    • Journal of Korean Home Economics Education Association
    • /
    • v.17 no.2
    • /
    • pp.171-182
    • /
    • 2005
  • The purpose of this study is to develop the Checklist for Observing and Analytical Framwork that assesses a series of activities related to the classroom teaching which is the core of teachers' professionalism. In clarifying the objectives of observing the classroom activities, it would be effective to understand the overall outline of the home economics instructions as well as to define the elements of the classroom work ; hence, the classroom work has been modularized in several stages, namely, planning/organization, execution, and evaluation. The stages are divided into nine elements of the classroom work in general : (1) Presenting the study objective, (2) Structuring classroom activities, (3) Teaching the content, (4) Question-and-answers (5) Feedback the to the students' responses, (6) Offering learning opportunities, (7) Stimulating the students' interest, (8) Evaluation, (9) Applying the result of the evaluation.

  • PDF

The Change in Beginning Science Teachers' Inquiry-Oriented Teaching Practice through Mentoring Program (멘토링을 통한 초임중등과학교사의 탐구지향적 교수실행 변화)

  • Nam, Jeong-Hee;Kim, Hyun-Ok;Go, Mun-Suk;Ko, Mi-Re
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.5
    • /
    • pp.544-556
    • /
    • 2010
  • The purpose of this study was to investigate the change in beginning science teachers' inquiry-oriented teaching practice through mentoring program. Participants in this study are three mentor teachers and three beginning teachers. The three beginning teachers are middle school science teachers who have less than four years teaching experience. Also three science teachers participated in the program as mentors, who have more than twelve years teaching experience. We collected data such as video recordings of beginning teachers' classes, lesson plans, recordings of one to one mentoring and RTOP class observation reports. Mentor teachers observed and analyzed five classes of each beginning teacher. Before the mentoring program, beginning teachers' teaching methods were more concept-oriented and teacheroriented. They rarely used inquiry-elements including prediction, reasoning, hypothesizing and students were not actively engaged in communicative interactions in a classroom. But during the mentoring program, these teachers recognized and responded to student diversity and encouraged all students to participate in science learning. Beginning teachers' teaching methods have changed to become student-oriented, teachers and students collaborated in pursuit of ideas, and students often initiated new activities relevant to an inquiry. As a result, this mentoring program provided beginning teachers the opportunities to reflect on their own teaching and reform their classes. The results show that school-centered mentoring program is helpful to enhance beginning science teachers' inquiry-oriented teaching ability.

A Survey of Elementary school teachers' perceptions of mathematics instruction (수학수업에 대한 초등교사의 인식 조사)

  • Kwon, Sungyong
    • Education of Primary School Mathematics
    • /
    • v.20 no.4
    • /
    • pp.253-266
    • /
    • 2017
  • The purpose of the study was to investigate the perceptions of Elementary school teachers on mathematics instruction. To do this, 7 test items were developed to obtain data on teacher's perception of mathematics instruction and 73 teachers who take mathematical lesson analysis lectures were selected and conducted a survey. Since the data obtained are all qualitative data, they were analyzed through coding and similar responses were grouped into the same category. As a result of the survey, several facts were found as follow; First, When teachers thought about 'mathematics', the first words that come to mind were 'calculation', 'difficult', and 'logic'. It is necessary for the teacher to have positive thoughts on mathematics and mathematics learning, and this needs to be stressed enough in teacher education and teacher retraining. Second, the reason why mathematics is an important subject is 'because it is related to the real life', followed by 'because it gives rise to logical thinking ability' and 'because it gives rise to mathematical thinking ability'. These ideas are related to the cultivating mind value and the practical value of mathematics. In order for students to understand the various values of mathematics, teachers must understand the various values of mathematics. Third, the responses for reasons why elementary school students hate mathematics and are hard are because teachers demand 'thinking', 'because they repeat simple calculations', 'children hate complicated things', 'bother', 'Because mathematics itself is difficult', 'the level of curriculum and textbooks is high', and 'the amount of time and activity is too much'. These problems are likely to be improved by the implementation of revised 2015 national curriculum that emphasize core competence and process-based evaluation including mathematical processes. Fourth, the most common reason for failing elementary school mathematics instruction was 'because the process was difficult' and 'because of the results-based evaluation'. In addition, 'Results-oriented evaluation,' 'iterative calculation,' 'infused education,' 'failure to consider the level difference,' 'lack of conceptual and principle-centered education' were mentioned as a failure factor. Most of these factors can be changed by improving and changing teachers' teaching practice. Fifth, the responses for what does a desirable mathematics instruction look like are 'classroom related to real life', 'easy and fun mathematics lessons', 'class emphasizing understanding of principle', etc. Therefore, it is necessary to deeply deal with the related contents in the training courses for the improvement of the teachers' teaching practice, and it is necessary to support not only the one-time training but also the continuous professional development of teachers.