• Title/Summary/Keyword: Learning pattern

Search Result 1,296, Processing Time 0.027 seconds

Variable Selection of Feature Pattern using SVM-based Criterion with Q-Learning in Reinforcement Learning (SVM-기반 제약 조건과 강화학습의 Q-learning을 이용한 변별력이 확실한 특징 패턴 선택)

  • Kim, Chayoung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.4
    • /
    • pp.21-27
    • /
    • 2019
  • Selection of feature pattern gathered from the observation of the RNA sequencing data (RNA-seq) are not all equally informative for identification of differential expressions: some of them may be noisy, correlated or irrelevant because of redundancy in Big-Data sets. Variable selection of feature pattern aims at differential expressed gene set that is significantly relevant for a special task. This issues are complex and important in many domains, for example. In terms of a computational research field of machine learning, selection of feature pattern has been studied such as Random Forest, K-Nearest and Support Vector Machine (SVM). One of most the well-known machine learning algorithms is SVM, which is classical as well as original. The one of a member of SVM-criterion is Support Vector Machine-Recursive Feature Elimination (SVM-RFE), which have been utilized in our research work. We propose a novel algorithm of the SVM-RFE with Q-learning in reinforcement learning for better variable selection of feature pattern. By comparing our proposed algorithm with the well-known SVM-RFE combining Welch' T in published data, our result can show that the criterion from weight vector of SVM-RFE enhanced by Q-learning has been improved by an off-policy by a more exploratory scheme of Q-learning.

Hybrid multiple component neural netwrok design and learning by efficient pattern partitioning method (효과적인 패턴분할 방법에 의한 하이브리드 다중 컴포넌트 신경망 설계 및 학습)

  • 박찬호;이현수
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.7
    • /
    • pp.70-81
    • /
    • 1997
  • In this paper, we propose HMCNN(hybrid multiple component neural networks) that enhance performance of MCNN by adapting new pattern partitioning algorithm which can cluster many input patterns efficiently. Added neural network performs similar learning procedure that of kohonen network. But it dynamically determine it's number of output neurons using algorithms that decide self-organized number of clusters and patterns in a cluster. The proposed network can effectively be applied to problems of large data as well as huge networks size. As a sresutl, proposed pattern partitioning network can enhance performance results and solve weakness of MCNN like generalization capability. In addition, we can get more fast speed by performing parallel learning than that of other supervised learning networks.

  • PDF

A Study on Accuracy Estimation of Service Model by Cross-validation and Pattern Matching

  • Cho, Seongsoo;Shrestha, Bhanu
    • International journal of advanced smart convergence
    • /
    • v.6 no.3
    • /
    • pp.17-21
    • /
    • 2017
  • In this paper, the service execution accuracy was compared by ontology based rule inference method and machine learning method, and the amount of data at the point when the service execution accuracy of the machine learning method becomes equal to the service execution accuracy of the rule inference was found. The rule inference, which measures service execution accuracy and service execution accuracy using accumulated data and pattern matching on service results. And then machine learning method measures service execution accuracy using cross validation data. After creating a confusion matrix and measuring the accuracy of each service execution, the inference algorithm can be selected from the results.

Loading pattern optimization using simulated annealing and binary machine learning pre-screening

  • Ga-Hee Sim;Moon-Ghu Park;Gyu-ri Bae;Jung-Uk Sohn
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1672-1678
    • /
    • 2024
  • We introduce a creative approach combining machine learning with optimization techniques to enhance the optimization of the loading pattern (LP). Finding the optimal LP is a critical decision that impacts both the reload safety and the economic feasibility of the nuclear fuel cycle. While simulated annealing (SA) is a widely accepted technique to solve the LP optimization problem, it suffers from the drawback of high computational cost since LP optimization requires three-dimensional depletion calculations. In this note, we introduce a technique to tackle this issue by leveraging neural networks to filter out inappropriate patterns, thereby reducing the number of SA evaluations. We demonstrate the efficacy of our novel approach by constructing a machine learning-based optimization model for the LP data of the Korea Standard Nuclear Power Plant (OPR-1000).

New Testability Measure Based on Learning (학습 정보를 이용한 테스트 용이도 척도의 계산)

  • 김지호;배두현;송오영
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.81-90
    • /
    • 2004
  • This paper presents new testability measure based on learning, which can be useful in the deterministic process of test pattern generation algorithms. This testability measure uses the structural information that are obtained by teaming. The proposed testability measure searches for test pattern that can early detect the conflict in case of the hardest decision problems. On the other hand in case of the easiest decision problem, it searches for test pattern that likely results in the least conflict. The proposed testability measure reduces CPU time to generate test pattern that accomplishes the same fault coverage as that of the distance-based measure.

A Development of Hanguel Learning System for Elementary School Students and Foreigners (초등학생과 외국인을 위한 한글 문자 익히기 시스템의 개발)

  • 조동욱
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.3
    • /
    • pp.285-296
    • /
    • 2001
  • This Paper develops the Hanguel character learning system for elementary school students and foreigners. Standard character pattern is selected and DB is consructed for model by feature extraction. For this, performance of pre-processing independent of environments, feature extraction and simility functions are defined. Finally, beauty evaluation is done by matching between input character pattern written by elementary school students or foreigners and standard character pattern. It is possible for this system to extend the specific character font learning from selecting the specific standard character pattern. Also the effectiveness of this parer is demonstrated by several experiments.

  • PDF

EXTRACTING INSIGHTS OF CLASSIFICATION FOR TURING PATTERN WITH FEATURE ENGINEERING

  • OH, SEOYOUNG;LEE, SEUNGGYU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.24 no.3
    • /
    • pp.321-330
    • /
    • 2020
  • Data classification and clustering is one of the most common applications of the machine learning. In this paper, we aim to provide the insight of the classification for Turing pattern image, which has high nonlinearity, with feature engineering using the machine learning without a multi-layered algorithm. For a given image data X whose fixel values are defined in [-1, 1], X - X3 and ∇X would be more meaningful feature than X to represent the interface and bulk region for a complex pattern image data. Therefore, we use X - X3 and ∇X in the neural network and clustering algorithm to classification. The results validate the feasibility of the proposed approach.

A multi-layed neural network learning procedure and generating architecture method for improving neural network learning capability (다층신경망의 학습능력 향상을 위한 학습과정 및 구조설계)

  • 이대식;이종태
    • Korean Management Science Review
    • /
    • v.18 no.2
    • /
    • pp.25-38
    • /
    • 2001
  • The well-known back-propagation algorithm for multi-layered neural network has successfully been applied to pattern c1assification problems with remarkable flexibility. Recently. the multi-layered neural network is used as a powerful data mining tool. Nevertheless, in many cases with complex boundary of classification, the successful learning is not guaranteed and the problems of long learning time and local minimum attraction restrict the field application. In this paper, an Improved learning procedure of multi-layered neural network is proposed. The procedure is based on the generalized delta rule but it is particular in the point that the architecture of network is not fixed but enlarged during learning. That is, the number of hidden nodes or hidden layers are increased to help finding the classification boundary and such procedure is controlled by entropy evaluation. The learning speed and the pattern classification performance are analyzed and compared with the back-propagation algorithm.

  • PDF

Back-Propagation Algorithm through Omitting Redundant Learning (중복 학습 방지에 의한 역전파 학습 알고리듬)

  • 백준호;김유신;손경식
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.9
    • /
    • pp.68-75
    • /
    • 1992
  • In this paper the back-propagation algorithm through omitting redundant learning has been proposed to improve learning speed. The proposed algorithm has been applied to XOR, Parity check and pattern recognition of hand-written numbers. The decrease of the number of patterns to be learned has been confirmed as learning proceeds even in early learning stage. The learning speed in pattern recognition of hand-written numbers is improved more than 2 times in various cases of hidden neuron numbers. It is observed that the improvement of learning speed becomes better as the number of patterns and the number of hidden numbers increase. The recognition rate of the proposed algorithm is nearly the same as that conventional method.

  • PDF

Adaptive Weight Collaborative Complementary Learning for Robust Visual Tracking

  • Wang, Benxuan;Kong, Jun;Jiang, Min;Shen, Jianyu;Liu, Tianshan;Gu, Xiaofeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.1
    • /
    • pp.305-326
    • /
    • 2019
  • Discriminative correlation filter (DCF) based tracking algorithms have recently shown impressive performance on benchmark datasets. However, amount of recent researches are vulnerable to heavy occlusions, irregular deformations and so on. In this paper, we intend to solve these problems and handle the contradiction between accuracy and real-time in the framework of tracking-by-detection. Firstly, we propose an innovative strategy to combine the template and color-based models instead of a simple linear superposition and rely on the strengths of both to promote the accuracy. Secondly, to enhance the discriminative power of the learned template model, the spatial regularization is introduced in the learning stage to penalize the objective boundary information corresponding to features in the background. Thirdly, we utilize a discriminative multi-scale estimate method to solve the problem of scale variations. Finally, we research strategies to limit the computational complexity of our tracker. Abundant experiments demonstrate that our tracker performs superiorly against several advanced algorithms on both the OTB2013 and OTB2015 datasets while maintaining the high frame rates.