DOI QR코드

DOI QR Code

EXTRACTING INSIGHTS OF CLASSIFICATION FOR TURING PATTERN WITH FEATURE ENGINEERING

  • OH, SEOYOUNG (DEPARTMENT OF MATHEMATICS, GYEONGSANG NATIONAL UNIVERSITY) ;
  • LEE, SEUNGGYU (DEPARTMENT OF MATHEMATICS, GYEONGSANG NATIONAL UNIVERSITY)
  • Received : 2020.07.29
  • Accepted : 2020.09.21
  • Published : 2020.09.25

Abstract

Data classification and clustering is one of the most common applications of the machine learning. In this paper, we aim to provide the insight of the classification for Turing pattern image, which has high nonlinearity, with feature engineering using the machine learning without a multi-layered algorithm. For a given image data X whose fixel values are defined in [-1, 1], X - X3 and ∇X would be more meaningful feature than X to represent the interface and bulk region for a complex pattern image data. Therefore, we use X - X3 and ∇X in the neural network and clustering algorithm to classification. The results validate the feasibility of the proposed approach.

References

  1. L. J. Allen. An introduction to mathematical biology., 2007. ISBN, 10:0-13.
  2. M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou. Lung pattern classification for interstitial lung diseases using a deep convolutional neural network. IEEE transactions on medical imaging, 35(5):1207-1216, 2016. https://doi.org/10.1109/TMI.2016.2535865
  3. M. Caron, P. Bojanowski, A. Joulin, and M. Douze. Deep clustering for unsupervised learning of visual features. In Proceedings of the European Conference on Computer Vision (ECCV), pages 132-149, 2018.
  4. Y. Chen, J. Z. Wang, and R. Krovetz. Clue: cluster-based retrieval of images by unsupervised learning. IEEE transactions on Image Processing, 14(8):1187-1201, 2005. https://doi.org/10.1109/TIP.2005.849770
  5. H. U. Dike, Y. Zhou, K. K. Deveerasetty, and Q. Wu. Unsupervised learning based on artificial neural network: A review. In 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), pages 322-327. IEEE, 2018.
  6. B. Ermentrout. Stripes or spots? nonlinear effects in bifurcation of reaction-diffusion equations on the square. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 434(1891):413-417, 1991. https://doi.org/10.1098/rspa.1991.0100
  7. M. Gameiro, K. Mischaikow, and T. Wanner. Evolution of pattern complexity in the cahn-hilliard theory of phase separation. Acta Materialia, 53(3):693-704, 2005. https://doi.org/10.1016/j.actamat.2004.10.022
  8. J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proceedings of the national academy of sciences, 79(8):2554-2558, 1982. https://doi.org/10.1073/pnas.79.8.2554
  9. D. Jeong, J. Shin, Y. Li, Y. Choi, J.-H. Jung, S. Lee, and J. Kim. Numerical analysis of energy-minimizing wavelengths of equilibrium states for diblock copolymers. Current Applied Physics, 14(9):1263-1272, 2014. https://doi.org/10.1016/j.cap.2014.06.016
  10. D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
  11. D. Lee, J.-Y. Huh, D. Jeong, J. Shin, A. Yun, and J. Kim. Physical, mathematical, and numerical derivations of the cahn-hilliard equation. Computational Materials Science, 81:216-225, 2014. https://doi.org/10.1016/j.commatsci.2013.08.027
  12. I. Lengyel and I. R. Epstein. Modeling of turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science, 251(4994):650-652, 1991. https://doi.org/10.1126/science.251.4994.650
  13. J. Murray. A pattern formation mechanism and its application to mammalian coat markings. In Vito Volterra Symposium on Mathematical Models in Biology, pages 360-399. Springer, 1980.
  14. J. Murray. A pre-pattern formation mechanism for animal coat markings. Journal of Theoretical Biology, 88(1):161-199, 1981. https://doi.org/10.1016/0022-5193(81)90334-9
  15. H. G. Othmer, K. Painter, D. Umulis, and C. Xue. The intersection of theory and application in elucidating pattern formation in developmental biology. Mathematical modelling of natural phenomena, 4(4):3-82, 2009. https://doi.org/10.1051/mmnp/20094401
  16. J. E. Pearson. Complex patterns in a simple system. Science, 261(5118):189-192, 1993. https://doi.org/10.1126/science.261.5118.189
  17. R. O. Prum and S. Williamson. Reaction-diffusion models of within-feather pigmentation patterning. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1493):781-792, 2002. https://doi.org/10.1098/rspb.2001.1896
  18. J. A. Reggia and D. Montgomery. A computational model of visual hallucinations in migraine. Computers in biology and medicine, 26(2):133-141, 1996. https://doi.org/10.1016/0010-4825(95)00051-8
  19. J. K. Seo, K. C. Kim, A. Jargal, K. Lee, and B. Harrach. A learning-based method for solving ill-posed nonlinear inverse problems: A simulation study of lung eit. SIAM journal on Imaging Sciences, 12(3):1275-1295, 2019. https://doi.org/10.1137/18M1222600
  20. Y. Shin and J. Ghosh. The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation. In IJCNN-91-Seattle international joint conference on neural networks, volume 1, pages 13-18. IEEE, 1991.
  21. A. M. Turing. The chemical basis of morphogenesis. Bulletin of mathematical biology, 52(1-2):153-197, 1990. https://doi.org/10.1016/S0092-8240(05)80008-4
  22. J. Yang, D. Parikh, and D. Batra. Joint unsupervised learning of deep representations and image clusters. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 5147-5156, 2016.
  23. A. Zheng and A. Casari. Feature engineering for machine learning: principles and techniques for data scientists. " O'Reilly Media, Inc.", 2018.