This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.
The Journal of Asian Finance, Economics and Business
/
제7권11호
/
pp.987-998
/
2020
This study aims to examine OL as a potential mediating variable in the relationship between IT and organizational performance. Organizational learning (OL) has been proposed as the mechanism to accomplish this task. Existing empirical research demonstrates that OL may indeed act as a mediator for the effect of IT on organizational outcomes. Also, existing literature discusses the use of technology in the organization, and the case for OL as the key knowledge process, and the intersection between technology and OL as a knowledge-based means for improving organizational performance. Many studies use a descriptive measure of OL despite the theory suggesting that a normative measure may be more appropriate. This study aims to address these concerns in a setting by using structural equation modelling (SEM) to compare the effectiveness of descriptive and normative measures of OL as mediating variables in knowledge-intensive organizations. Survey results support OL as a mediator between IT and organizational performance in addition to normative measures of OL outperforming descriptive measures. Implications for research and practice are discussed. To test the model, we will apply (SEM) structural equation modeling in the analysis of a moment structures (AMOS) on the empirical evidence collected from 218 Pakistani CEOs and top managers.
편미분방정식의 해를 구하기 위한 여러 수치해법들의 한계와 순수 데이터 기반 기계학습의 단점을 극복하기 위해 물리정보신경망(physics-informed neural network, PINN)이 제안되었다. 물리정보신경망은 편미분방정식을 손실함수 구성에 직접 활용하여 기계학습 훈련에 물리적 제약을 주는 기법으로 파동방정식 모델링에도 활용될 수 있다. 그러나 물리정보신경망을 이용하여 파동방정식을 풀기 위해서는 신경망 훈련 시 입력에 대한 2차 미분이 수행되어야 하고, 그 결과로 출력되는 파동장은 복잡한 역학적 현상들을 포함하고 있어 섬세한 전략이 필요하다. 이 해설 논문에서는 물리정보신경망의 기본 개념을 설명하고 파동방정식 모델링에 활용하기 위한 고려사항들에 대해 고찰하였다. 이러한 고려사항에는 공간좌표 정규화, 활성함수 선정, 물리손실 추가 전략이 포함된다. 훈련자료의 공간좌표를 정규화한 후 사용하면 파동방정식 모델링을 위한 신경망 훈련에서 초기 조건이 더 정확하게 반영되는 것을 수치 실험을 통해 보였다. 또한 신경망을 통한 파동장 예측에 가장 적절한 활성함수를 선정하기 위해 여러 함수들의 특성을 비교했다. 특성 비교는 각 활성함수들의 입력자료에 대한 미분과 수렴성을 중심으로 이루어졌다. 마지막으로 신경망 훈련 중 손실함수에 물리손실을 추가하는 두가지 시나리오의 결과를 비교하였다. 수치 실험을 통해 훈련 초기부터 물리손실을 활용하는 전략보다 초기 훈련단계 이후부터 물리손실을 적용하는 커리큘럼 기반 학습전략이 효과적이라는 결과를 도출했다. 추가로 이 결과를 물리손실을 전혀 사용하지 않은 훈련 결과와 비교하여 PINN기법의 효과를 확인하였다.
The purpose of this study was to investigate structural relationships among engineering self-efficacy, outcome expectation, interest, learning persistence, and career preparation behavior of engineering students. Participants (n=428) completed measures of engineering self-efficacy, outcome expectations, interests, learning persistence, and career preparation behavior. Results from structural equation modeling analysis were found to support the proposed model which included learning persistence and career preparation behavior, influence from engineering self-efficacy, outcome expectations, and interests. In addition, major persistence intention and career preparation behavior of engineering college students are influenced by the direct and indirect effects on engineering self-efficacy, interest, and outcome expectations. The implications of the findings on practice for Korean engineering college students are discussed.
This paper considers learning and teaching of mathematical analysis in teachers college. It concentrates on showing a way how learning and teaching of mathematical analysis should be considered for mathematical teachers training. It is composed of five chapters including Chapter I as an introduction and Chapter Vasa concluding remarks. Chapter II deals with goal and contents of global mathematical analysis. The main Chapter, named Chapter III, demonstrates exhibition of contents, way of operations, and contents of teaching and learning of mathematical real analysis. Chapter IV shows an example of learning and teaching of mathematical real analysis concerning to fixed points and approximate solutions.
Purpose: The purpose of this study is to examine the effects of educational service quality, participation intention, and educational performance in action learning class. Methods: The proposed research model is tested using structural equation modeling for hypotheses based on the data collected from one of action learning class. Results: The results indicate that educational service quality(reliability, assurance, tangibles, empathy, information accuracy, and relationship quality) positively affects participation intention which in turn improve educational performance, including aspects of before and after class of action learning. In addition, participation intention in classroom positively affects educational performance with both groups. For after class of action learning, the result confirms the effect of responsiveness of educational service quality on participation intention, however, in before class of action learning there is not showed a significant relationship. Conclusion: This study would provide useful information and can be applied to the improvement of educational performance through the participation of students by the instructors and the educational institutes who want to apply the active learning forum in classroom.
본 연구의 목적은 대학에서 UTAUT에 기반한 m-learning 학습자의 만족도에 미치는 영향을 실증적으로 검증하고자 하였다. 각 요인의 관계를 살펴보기 위하여 289부의 설문지를 SPSS 22.0, AMOS 21.0을 이용하여 분석하였다. 분석결과는 보안성이 성과기대와 노력기대에 정(+)의 영향을 미칠 것이라는 가설은 채택되었다. 다양성과 경제성도 성과기대에 영향을 미치는 것으로 나타났다. 매개변수인 성과기대와 노력기대는 학습자의 만족도에 정의 영향을 미친다는 가설은 채택되었다. 이런 결과는 UTAUT에 기반한 m-learning 운영에 필요한 기초자료를 제공하였다는 시사점이 있다. 이와 같은 시사점에도 불구하고 UTAUT에서 제시된 요인 중 일부만을 분석하였다는 한계점이 있다. 향후에는 대학생 외에 일반인에 대한 분석도 포함하여 UTAUT에 기반한 m-learning에 미치는 다양한 영향 변수에 대한 분석을 통하여 계속적으로 보완하고자 한다.
In software-defined wireless networking (SDWN), the optimal routing technique is one of the effective solutions to improve its performance. This routing technique is done by many different methods, with the most common using integer linear programming problem (ILP), building optimal routing metrics. These methods often only focus on one routing objective, such as minimizing the packet blocking probability, minimizing end-to-end delay (EED), and maximizing network throughput. It is difficult to consider multiple objectives concurrently in a routing algorithm. In this paper, we investigate the application of machine learning to control routing in the SDWN. An intelligent routing algorithm is then proposed based on the machine learning to improve the network performance. The proposed algorithm can optimize multiple routing objectives. Our idea is to combine supervised learning (SL) and reinforcement learning (RL) methods to discover new routes. The SL is used to predict the performance metrics of the links, including EED quality of transmission (QoT), and packet blocking probability (PBP). The routing is done by the RL method. We use the Q-value in the fundamental equation of the RL to store the PBP, which is used for the aim of route selection. Concurrently, the learning rate coefficient is flexibly changed to determine the constraints of routing during learning. These constraints include QoT and EED. Our performance evaluations based on OMNeT++ have shown that the proposed algorithm has significantly improved the network performance in terms of the QoT, EED, packet delivery ratio, and network throughput compared with other well-known routing algorithms.
반복 학습 제어에서 수렴 조건은 수렴 속도와 잔존 오차와 같은 성능을 결정한다. 따라서, 덜 신중한 수렴 조건을 구할 수 있다면, 그 성능은 향상될 것이고 사용 적합한 학습 제어기의 수는 증가된다. 주파수 영역에서, 연속적인 오차들간의 전달 함수의 $H_{\infty}$ 놈(norm)을 학습 시스템의 수렴성을 조사하기 위해 사용해왔다. 그러나, $H_{\infty}$ 놈을 바탕으로 한 수렴 조건이 단조 수렴성에 대하여 명확한 특성을 가진다하더라도, 특히, 다중 입출력 시스템에서 몇 가지 단점을 가진다. 본 논문에서 는 수렴 조건과 수렴의 단조성간의 관계를 밝힌다. 또한 주파수 영역에서 기존의 수렴 조건을 대신할 수 있는 수정된 수렴 조건을 주파수 영역 리아프노프(Lyapunov) 방정식을 이용하여 구한다.
이 연구의 목적은 모바일 학습환경에서 교수실재감, 인지적 실재감, 사회적 실재감, 서비스 질, 학습몰입과 학습 만족도 간의 구조적인 관계를 규명하는데 있다. 설문조사는 국내 W 디지털대학교에서 모바일서비스를 사용하는 학습자 255명을 대상으로 구조방정식 방법을 사용하여 분석하였다. 연구결과 인지적 실재감, 사회적 실재감, 서비스 질은 학습 몰입에 영향을 미치는 것으로 나타났고 인지적 실재감, 서비스 질, 학습몰입은 학습 만족도에 영향을 미치는 것으로 나타났다. 본 연구에서는 연구결과를 토대로 모바일러닝 환경에서 학습몰입과 학습만족도를 높이기 위한 전략을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.