Smart homes integrated with sensors, actuators, wireless networks and context-aware middleware will soon become part of our daily life. This paper describes a context-aware middleware providing an automatic home service based on a user's preference. The context-aware middle-ware utilizes 6 basic data for learning and predicting the user's preference on the multimedia content : the pulse, the body temperature, the facial expression, the room temperature, the time, and the location. The six data sets construct the context model and are used by the context manager module. The log manager module maintains history information for multimedia content chosen by the user. The user-pattern learning and pre-dicting module based on a neural network predicts the proper home service for the user. The testing results show that the pattern of an in-dividual's preferences can be effectively evaluated and predicted by adopting the proposed context model.
In this paper, we propose a new paradigm of weighting methods for naive Bayesian learning. We propose more fine-grained weighting methods, called value weighting method, in the context of naive Bayesian learning. While the current weighting methods assign a weight to an attribute, we assign a weight to an attribute value. We develop new methods, using Kullback-Leibler function, for both value weighting and feature weighting in the context of naive Bayesian. The performance of the proposed methods has been compared with the attribute weighting method and general naive bayesian. The proposed method shows better performance in most of the cases.
Journal of the Korean Society of Earth Science Education
/
v.8
no.1
/
pp.98-113
/
2015
The purpose of this study was to explore how science docents developed their expertise in the context of situated learning where two experienced docents played roles of mentors. Two experienced docents as mentors and six participating docents as mentees interacted in the community to develop exhibition interpretation strategies to be more professional in interacting with visitors through the workshops developed by the researcher. To figure out how docents developed their expertise in exhibit interpretation, the researcher collected the data from docents through observation, artifacts, and interviews as well as surveys. The result of this study included that participating docents formed new perception about scientific inquiry as well as scientific literacy and they developed professional skills of planning, implementing, and reflecting of exhibition interpretation in the context of situated learning, where docents formed alliance one another. It is recognized that participating docents' passions to be professional in exhibition interpretation and two experienced docents' wills as mentors made dynamic interaction in pursuing the same aim of docents' expertise in exhibition interpretation.
In the acoustic modeling for large vocabulary speech recognition, a sparse data problem caused by a huge number of context-dependent (CD) models usually leads the estimated models to being unreliable. In this paper, we develop a new clustering method based on the C45 decision-tree learning algorithm that effectively encapsulates the CD modeling. The proposed scheme essentially constructs a supervised decision rule and applies over the pre-clustered triphones using the C45 algorithm, which is known to effectively search through the attributes of the training instances and extract the attribute that best separates the given examples. In particular, the data driven method is used as a clustering algorithm while its result is used as the learning target of the C45 algorithm. This scheme has been shown to be effective particularly over the database of low unknown-context ratio in terms of recognition performance. For speaker-independent, task-independent continuous speech recognition task, the proposed method reduced the percent accuracy WER by 3.93% compared to the existing rule-based methods.
Journal of Fisheries and Marine Sciences Education
/
v.18
no.3
/
pp.218-228
/
2006
The purpose of this study is to review the essentials of teaching-effectiveness affecting the students' achievement. Any discussion of psychological research and theory concerned with the way teachers affect student learning must consider a variety of issues germane to this research. These issues provide a context for interpreting the research presently available and for identifying an appropriate agenda for future research.Finally, research on teacher effects needs to expand its concern for the psychological mechanisms that are responsible for student learning from instruction. Within the context of this study, that concern is probably the major challenge facing educational psychologists interested in the teaching-learning process.
This study examines how open-ended tasks can be implemented with the support of redefined learning goals and teaching practices from a student-centered perspective. In order to apply open-ended tasks, learning goals should be adopted by individual student's cognitive levels in the classroom context rather than by designated goals from curriculum. Equitable opportunities to share children's mathematical ideas are also attainable through flexible management of lesson-time. Eventually, students can foster their meta-cognition in the process of abstraction of what they've learned through discussions facilitated by teachers. A pedagogical implication for professional development is that teachers need to improve additional teaching practices such as how to tailor tasks relevant to their classroom context and how to set norms for students to appreciate peer's mathematical ideas in the discussions.
Statistical thinking has a broad definition but focuses on the context of regression modelling in the present study. To foster students' statistical thinking within the context, teaching should no longer be seen as transfer of knowledge from teacher to students but as a process of engaging with learning activities in which they develop ownership of knowledge. This study aims at collaborative learning contexts; students were divided into small groups in order to increase opportunities for peer collaboration. Each group of students was asked to do a regression project after class. Through doing the project, they learnt to organize and connect previously accrued piecemeal statistical knowledge in an integrated manner. They could also clarify misunderstandings and solve problems through verbal exchanges among themselves. They gave a clear and lucid account of the model they had built and showed collaborative interactions when presenting their projects in front of class. A survey was conducted to solicit their feedback on how peer collaboration would facilitate learning of statistics. Almost all students found their interaction with their peers productive; they focused on the development of statistical thinking with concerted effort.
The purpose of this study was to identify the relationship of instructional design, perceived learning transfer, and satisfaction. The data were collected using questionnaire from the sample of 239 nursing students. The level of learning transfer was explained by introduction with learning context & providing guidance and initial attention. The level of learning transfer was explained by learning object with motivation, learning goal alignment, accessibility and feedback & adaptation. The level of program satisfaction was explained by introduction with learning context & providing guidance and initial attention. The level of program satisfaction was explained by learning object with motivation, presentation design, interaction availability, feedback & adaptation, learning goal alignment and contents quality. The findings serve as basic data to design e-Learning program to improve learning transfer and satisfaction.
Since the mitigation of fear of crime significantly enhances the consumptions in a city, studies focusing on urban safety analysis have received much attention as means of revitalizing the local economy. In addition, with the development of computer vision and machine learning technologies, efficient and automated analysis methods have been developed. Previous studies have used global features to predict the safety of cities, yet this method has limited ability in accurately predicting abstract information such as safety assessments. Therefore we used a Convolutional Context Neural Network (CCNN) that considered "context" as a decision criterion to accurately predict safety of cities. CCNN model is constructed by combining a stacked auto encoder with a fully connected network to find the context and use it in the CNN model to predict the score. We analyzed the RMSE and correlation of SVR, Alexnet, and Sharing models to compare with the performance of CCNN model. Our results indicate that our model has much better RMSE and Pearson/Spearman correlation coefficient.
The purpose of this study was to analyze majors trends and issues of e-Learning curriculum for human resource development in the corporate context. The e-Learning curriculum was chosen as the subject of research consists of 2,710 lectures that were given from 2007 to July 2009 for the recent three years by providing at Ministry of Labor and Korea Research Institute for Vocational Education & Training. In order to investigate trends and issues, it was employed theme analysis which is one of the types of document analysis that approach a qualitative research methodology. As a result of this research, 7 major trends and issues in e-Learning curriculum for HRD in the field of corporate education were drawn; ① Strengthening expertise through learning of job related professional knowledge, ② Cultivation of common & essential knowledge for a job to increase work performance efficiency ③ Organizational management strategy for improving performance, ④ Organizational management and operational strategy for actively responding to environmental changes, ⑤ Leadership as a strategy for cultivating core personnel and field-centered practical leadership. ⑥ Creating a happy workplace through the work-life balance, ⑦ Strengthening global communication skill. Based on these analysis, practicals and theoretical implications of e-Learning professionals and HR researchers for HRD were suggested.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.