• 제목/요약/키워드: Learning System for the Blind

검색결과 42건 처리시간 0.025초

CNN 기법을 활용한 운전자 시선 사각지대 보조 시스템 설계 및 구현 연구 (A Study on Design and Implementation of Driver's Blind Spot Assist System Using CNN Technique)

  • 임승철;고재승
    • 한국인터넷방송통신학회논문지
    • /
    • 제20권2호
    • /
    • pp.149-155
    • /
    • 2020
  • 한국도로교통공단은 교통사고분석시스템(TAAS)을 활용하여 2015년부터 발생한 교통사고 원인을 분석한 통계를 제공하고 있다. 교통사고 발생 주요 원인으로, 2018년 한해 전체 교통사고 발생원인 중 전방주시 부주의가 대부분의 원인임을 TAAS를 통해 발표했다. 교통사고 원인에 대한 통계자료의 세부항목으로 운전 중 스마트폰 사용, DMB 시청 등의 안전운전 불이행 51.2%와 안전거리 미확보 14%, 보행자 보호의무 위반 3.6% 등으로, 전체적으로 68.8%의 비율을 보여준다. 본 논문에서는 Deep Learning의 알고리듬 중 CNN(Convolutional Neural Network)를 활용하여 첨단 운전자 보조 시스템 ADAS(Advanced Driver Assistance Systems)을 개선한 시스템을 제안하고자 한다. 제안된 시스템은 영상처리에 주로 사용되는 Conv2D 기법을 사용하여 운전자의 얼굴과 눈동자의 조향을 분류하는 모델을 학습하고, 차량 전방에 부착된 카메라로 자동차의 주변 object를 인지 및 검출하여 주행환경을 인지한다. 그 후, 학습된 시선 조향모델과 주행환경 데이터를 사용하여 운전자의 시선과 주행환경에 따라, 위험요소를 3단계로 분류하고 검출하여 운전자의 전방 및 사각지대 보조한다.

산업용 로봇 작업장 안전시스템 개발에 대한 연구 (A Study on the Development of Industrial Robot Workplace Safety System)

  • 김진배;권순현;이만수
    • 대한안전경영과학회지
    • /
    • 제25권3호
    • /
    • pp.17-22
    • /
    • 2023
  • As the importance of artificial intelligence grows rapidly and emerges as a leader in technology, it is becoming an important variable in the next-generation industrial system along with the robot industry. In this study, a safety system was developed using deep learning technology to provide worker safety in a robot workplace environment. The implemented safety system has multiple cameras installed with various viewing directions to avoid blind spots caused by interference. Workers in various scenario situations were detected, and appropriate robot response scenarios were implemented according to the worker's risk level through IO communication. For human detection, the YOLO algorithm, which is widely used in object detection, was used, and a separate robot class was added and learned to compensate for the problem of misrecognizing the robot as a human. The performance of the implemented system was evaluated by operator detection performance by applying various operator scenarios, and it was confirmed that the safety system operated stably.

음향 기반 물 사용 활동 감지용 엣지 컴퓨팅 시스템 (The Edge Computing System for the Detection of Water Usage Activities with Sound Classification)

  • 현승호;지영준
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권2호
    • /
    • pp.147-156
    • /
    • 2023
  • Efforts to employ smart home sensors to monitor the indoor activities of elderly single residents have been made to assess the feasibility of a safe and healthy lifestyle. However, the bathroom remains an area of blind spot. In this study, we have developed and evaluated a new edge computer device that can automatically detect water usage activities in the bathroom and record the activity log on a cloud server. Three kinds of sound as flushing, showering, and washing using wash basin generated during water usage were recorded and cut into 1-second scenes. These sound clips were then converted into a 2-dimensional image using MEL-spectrogram. Sound data augmentation techniques were adopted to obtain better learning effect from smaller number of data sets. These techniques, some of which are applied in time domain and others in frequency domain, increased the number of training data set by 30 times. A deep learning model, called CRNN, combining Convolutional Neural Network and Recurrent Neural Network was employed. The edge device was implemented using Raspberry Pi 4 and was equipped with a condenser microphone and amplifier to run the pre-trained model in real-time. The detected activities were recorded as text-based activity logs on a Firebase server. Performance was evaluated in two bathrooms for the three water usage activities, resulting in an accuracy of 96.1% and 88.2%, and F1 Score of 96.1% and 87.8%, respectively. Most of the classification errors were observed in the water sound from washing. In conclusion, this system demonstrates the potential for use in recording the activities as a lifelog of elderly single residents to a cloud server over the long-term.

시각장애인을 위한 시각 도움 서비스를 제공하는 인공지능 시스템 개발 (Development of artificial intelligent system for visual assistance to the Visually Handicapped)

  • 오창현;최광요;이호영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.1290-1293
    • /
    • 2021
  • 현재 시각장애인들의 일상생활에 있어 많은 불편함을 겪고 있어 시각장애인에게 도움이 되고자 실시간 객체인식을 하여 보행환경의 정보를 전달하는 안경을 만드는 프로젝트를 진행하였다. 핵심 기능에 해당하는 객체인식은 인공지능 모델 YOLOv4가 사용되었으며, 시각장애인의 입장에서 걸어 다닐 때 인식 되어야 하는 객체들을 선정하고, 이들을 대상으로 학습 데이터를 재구성하고 YOLOv4의 재학습을 진행하였다. 학습 결과 모든 객체들에 대한 정확도는 68%를 보였으나 시각 장애인이 걸어다닐 때 인식되어야 하는 필수객체(Person, Bus, Car, Traffic_light, Bicycle, Motorcycle)들의 인식률은 84%로 측정되었다. 향 후 진행될 학습에선 더욱 다양한 방법으로 학습데이터를 확보하고, YOLOv4가 아닌 darkflow를 이용해 다양한 parameter로 학습을 진행하여 다면적인 성능비교가 필요하다.

딥러닝 활용 원전 중대사고 진단 (Nuclear Power Plant Severe Accident Diagnosis Using Deep Learning Approach)

  • 김성엽;최윤영;박수용;권오규;신형기
    • 한국산업정보학회논문지
    • /
    • 제27권6호
    • /
    • pp.95-103
    • /
    • 2022
  • 원자력발전소의 중대사고 발생 시 신속하고 정확하게 사고 상황을 파악해야 하며, 이러한 사고진단 정보를 획득했을 때 적절한 사고관리 및 대응을 수행할 수 있다. 본 연구에서는 국가원자력 재난관리 시스템인 AtomCARE (Computerized technical Advisory system for a Radiological Emergency)로 전송되는 주요 발전소 정보로부터 중대사고 상황을 진단하는데 있어 딥러닝 기술의 접목을 고려하였다. 이를 위하여 주요 시나리오를 선정하고 사고 진행에 따른 상세 시나리오에 대하여 중대사고 해석 코드인 MAAP5 다량 계산을 통한 학습 DB를 구축하였다. 그리고 이 DB의 학습을 통하여 주요 발전소 정보로부터 중대사고 상세 시나리오를 분류할 수 있는, 즉 중대사고 상황을 진단할 수 있는 기술을 개발하였다. 또한 블라인드 테스트와 주성분분석을 통한 검증을 수행하였다. 본 연구에서 개발한 기술은 향후 전체 중대사고 시나리오로 확장 및 적용 가능할 것으로 판단되며 신속하고 정확한 사고진단의 기반기술로 활용 가치가 높을 것으로 기대된다.

QAM 시스템에서 DSE-MMA 블라인드 등화 알고리즘의 성능 평가 (Performance Evaluation of DSE-MMA Blind Equalization Algorithm in QAM System)

  • 강대수
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권6호
    • /
    • pp.115-121
    • /
    • 2013
  • 본 논문은 송신 부호가 대역 제한, 위상 찌그러짐이 존재하는 비선형 통신 채널을 통과할 때 발생되는 부호간 간섭을 보상하기 위한 블라인드 등화 알고리즘인 SE-MMA (Signed-Error MMA)의 roburstness 성능을 개선할 수 있는 DSE-MMA (Dithered Sign-Error MMA)에 관한 것이다. SE-MMA는 등화기의 탭 계수 갱신을 위하여 곱셈 대신 1 bit 양자화기를 사용하므로 알고리즘의 연산량을 줄일 수 있어 H/W 응용에 유리하지만, 양자화 과정에서 발생되는 정보 손실에 의하여 전체적인 블라인드 등화 성능 알고리즘이 MMA보다 열화되는 단점이 있다. DSE-MMA는 SE-MMA의 단점 중에서 roburstness를 나타내는 SER 성능을 개선키 위하여 양자화 전에 dither 신호를 이용하는 Dithered Signed-Error 개념을 MMA에 적용하였으며, SE-MMA 와 MMA 알고리즘이 갖는 부호간 간섭에 의한 진폭과 위상 찌그러짐을 동시 보상 능력을 갖는다. 논문에서 DSE-MMA 블라인드 등화 알고리즘의 성능을 나타내는 지수로는 등화기 출력 신호, 잔류 isi, MD (Maximum Distortion), MSE와 SER를 사용하였으며, 이들 성능 지수를 적용할 때 SE-MMA 알고리즘과 비교하기 위하여 컴퓨터 시뮬레이션을 수행하였다. 시뮬레이션 결과 DSE-MMA가 SE-MMA 보다 roburstness 와 정상 상태 이후 성능 지수의 양에서 개선됨을 알 수 있었지만, 초기 상태에서 정상 상태에 도달하는 수렴 속도에서는 늦어짐을 확인하였다.

주요 선진국 민간주도형 도서관 장애인서비스 분석과 시사점 (Analysis and Implications of Private-led Library Services for the Disabled in Major Advanced Countries)

  • 윤희윤
    • 한국도서관정보학회지
    • /
    • 제53권2호
    • /
    • pp.1-23
    • /
    • 2022
  • 지식과 정보에 대한 접근은 보편적 인권이다. 그러나 2013년 6월 27일 마라케시 조약이 채택된 후에도 대다수 국가에서 시각장애인을 포함한 독서장애인이 접근 가능한 자료는 표준 인쇄물의 1-7%에 불과하고 도서관서비스도 매우 취약하여 도서 기근이 계속되고 있다. 이러한 심각한 격차 및 불평등에 주목한 본 연구는 주요 선진국에서 민간단체가 장애인서비스를 주도하는 미국 Learning Ally와 Bookshare, 영국 RNIB, 프랑스 BNFA, 일본 SAPI를 분석하였다. 주요 내용은 모태와 발전, 법적 근거와 주요 정책, 도서관과의 관계, 회원제도, 서비스 체계와 내용, 대체자료의 개발과 확보, 서비스 제공 실적 등이다. 그리고 도출된 시사점과 마라케시 조약을 기반으로 국내 도서관 장애인서비스 강화를 위한 전략적 과제를 제안하였다. 장애인 '독서장벽 해소를 위한 법률' 제정 촉구, 도서관서비스를 제약하는 「저작권법」 관련 조항 개정, 국립장애인도서관 조직역량 강화, 도서관평가에서 장애인서비스 지표 제고, 광역대표도서관 중심의 도서관 협력시스템 구축과 서비스 확대 등이 시급하다.

영상처리 및 딥러닝 기반 시각장애인 옷장 시스템 (Wardrobe System for Blind Based On Image Processing and Deep Learning)

  • 이윤직;황영준;이태호;강한별;이기영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 추계학술발표대회
    • /
    • pp.962-964
    • /
    • 2019
  • 본 논문에서는 시각적 정보를 인지 할 수 없는 시각장애인들의 기본적인 의생활을 도와 줄 수 있게 의류의 시각적 정보를 영상처리 및 딥러닝을 활용하여 청각적 정보로 변환하고 음성으로 사용자에게 알려 줄 수 있는 스마트 옷장 시스템을 개발하였다.

시각장애인을 위한 화폐 인식 시스템 (Currency Recognition System for Blind People)

  • 유동준;김성준;이준영;강현수;손준호;오세진
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.257-258
    • /
    • 2024
  • 현재 시각장애인들이 현금을 사용하게 될 시 지폐가 얼마인지 확인할 방법이 없어 불편을 겪거나 금전적 사기를 당할 위험이 잦다. 한국은행에서는 이러한 사고를 막기 위해 점자 지폐를 만들어 발부하고 있지만 시각장애인 91%가 식별하지 못해 많은 불편을 겪고 있다. 본 논문에서는 딥러닝을 활용하여 화폐를 인식하고 TTS 기술을 사용하여 지폐의 값이 얼마인지 소리로 알려주는 시스템을 개발하였다. 지폐 인식을 위해 데이터를 직접 수집하여 YOLOv5 알고리즘을 활용하여 학습시킨 Weights 파일을 사용하였다. 이를 활용하여 시각장애인들은 더 안전하게 현금을 사용하고, 금전적인 문제를 예방할 수 있다.

  • PDF

Post-Processing for JPEG-Coded Image Deblocking via Sparse Representation and Adaptive Residual Threshold

  • Wang, Liping;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1700-1721
    • /
    • 2017
  • The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.