한국도로교통공단은 교통사고분석시스템(TAAS)을 활용하여 2015년부터 발생한 교통사고 원인을 분석한 통계를 제공하고 있다. 교통사고 발생 주요 원인으로, 2018년 한해 전체 교통사고 발생원인 중 전방주시 부주의가 대부분의 원인임을 TAAS를 통해 발표했다. 교통사고 원인에 대한 통계자료의 세부항목으로 운전 중 스마트폰 사용, DMB 시청 등의 안전운전 불이행 51.2%와 안전거리 미확보 14%, 보행자 보호의무 위반 3.6% 등으로, 전체적으로 68.8%의 비율을 보여준다. 본 논문에서는 Deep Learning의 알고리듬 중 CNN(Convolutional Neural Network)를 활용하여 첨단 운전자 보조 시스템 ADAS(Advanced Driver Assistance Systems)을 개선한 시스템을 제안하고자 한다. 제안된 시스템은 영상처리에 주로 사용되는 Conv2D 기법을 사용하여 운전자의 얼굴과 눈동자의 조향을 분류하는 모델을 학습하고, 차량 전방에 부착된 카메라로 자동차의 주변 object를 인지 및 검출하여 주행환경을 인지한다. 그 후, 학습된 시선 조향모델과 주행환경 데이터를 사용하여 운전자의 시선과 주행환경에 따라, 위험요소를 3단계로 분류하고 검출하여 운전자의 전방 및 사각지대 보조한다.
As the importance of artificial intelligence grows rapidly and emerges as a leader in technology, it is becoming an important variable in the next-generation industrial system along with the robot industry. In this study, a safety system was developed using deep learning technology to provide worker safety in a robot workplace environment. The implemented safety system has multiple cameras installed with various viewing directions to avoid blind spots caused by interference. Workers in various scenario situations were detected, and appropriate robot response scenarios were implemented according to the worker's risk level through IO communication. For human detection, the YOLO algorithm, which is widely used in object detection, was used, and a separate robot class was added and learned to compensate for the problem of misrecognizing the robot as a human. The performance of the implemented system was evaluated by operator detection performance by applying various operator scenarios, and it was confirmed that the safety system operated stably.
Efforts to employ smart home sensors to monitor the indoor activities of elderly single residents have been made to assess the feasibility of a safe and healthy lifestyle. However, the bathroom remains an area of blind spot. In this study, we have developed and evaluated a new edge computer device that can automatically detect water usage activities in the bathroom and record the activity log on a cloud server. Three kinds of sound as flushing, showering, and washing using wash basin generated during water usage were recorded and cut into 1-second scenes. These sound clips were then converted into a 2-dimensional image using MEL-spectrogram. Sound data augmentation techniques were adopted to obtain better learning effect from smaller number of data sets. These techniques, some of which are applied in time domain and others in frequency domain, increased the number of training data set by 30 times. A deep learning model, called CRNN, combining Convolutional Neural Network and Recurrent Neural Network was employed. The edge device was implemented using Raspberry Pi 4 and was equipped with a condenser microphone and amplifier to run the pre-trained model in real-time. The detected activities were recorded as text-based activity logs on a Firebase server. Performance was evaluated in two bathrooms for the three water usage activities, resulting in an accuracy of 96.1% and 88.2%, and F1 Score of 96.1% and 87.8%, respectively. Most of the classification errors were observed in the water sound from washing. In conclusion, this system demonstrates the potential for use in recording the activities as a lifelog of elderly single residents to a cloud server over the long-term.
현재 시각장애인들의 일상생활에 있어 많은 불편함을 겪고 있어 시각장애인에게 도움이 되고자 실시간 객체인식을 하여 보행환경의 정보를 전달하는 안경을 만드는 프로젝트를 진행하였다. 핵심 기능에 해당하는 객체인식은 인공지능 모델 YOLOv4가 사용되었으며, 시각장애인의 입장에서 걸어 다닐 때 인식 되어야 하는 객체들을 선정하고, 이들을 대상으로 학습 데이터를 재구성하고 YOLOv4의 재학습을 진행하였다. 학습 결과 모든 객체들에 대한 정확도는 68%를 보였으나 시각 장애인이 걸어다닐 때 인식되어야 하는 필수객체(Person, Bus, Car, Traffic_light, Bicycle, Motorcycle)들의 인식률은 84%로 측정되었다. 향 후 진행될 학습에선 더욱 다양한 방법으로 학습데이터를 확보하고, YOLOv4가 아닌 darkflow를 이용해 다양한 parameter로 학습을 진행하여 다면적인 성능비교가 필요하다.
원자력발전소의 중대사고 발생 시 신속하고 정확하게 사고 상황을 파악해야 하며, 이러한 사고진단 정보를 획득했을 때 적절한 사고관리 및 대응을 수행할 수 있다. 본 연구에서는 국가원자력 재난관리 시스템인 AtomCARE (Computerized technical Advisory system for a Radiological Emergency)로 전송되는 주요 발전소 정보로부터 중대사고 상황을 진단하는데 있어 딥러닝 기술의 접목을 고려하였다. 이를 위하여 주요 시나리오를 선정하고 사고 진행에 따른 상세 시나리오에 대하여 중대사고 해석 코드인 MAAP5 다량 계산을 통한 학습 DB를 구축하였다. 그리고 이 DB의 학습을 통하여 주요 발전소 정보로부터 중대사고 상세 시나리오를 분류할 수 있는, 즉 중대사고 상황을 진단할 수 있는 기술을 개발하였다. 또한 블라인드 테스트와 주성분분석을 통한 검증을 수행하였다. 본 연구에서 개발한 기술은 향후 전체 중대사고 시나리오로 확장 및 적용 가능할 것으로 판단되며 신속하고 정확한 사고진단의 기반기술로 활용 가치가 높을 것으로 기대된다.
본 논문은 송신 부호가 대역 제한, 위상 찌그러짐이 존재하는 비선형 통신 채널을 통과할 때 발생되는 부호간 간섭을 보상하기 위한 블라인드 등화 알고리즘인 SE-MMA (Signed-Error MMA)의 roburstness 성능을 개선할 수 있는 DSE-MMA (Dithered Sign-Error MMA)에 관한 것이다. SE-MMA는 등화기의 탭 계수 갱신을 위하여 곱셈 대신 1 bit 양자화기를 사용하므로 알고리즘의 연산량을 줄일 수 있어 H/W 응용에 유리하지만, 양자화 과정에서 발생되는 정보 손실에 의하여 전체적인 블라인드 등화 성능 알고리즘이 MMA보다 열화되는 단점이 있다. DSE-MMA는 SE-MMA의 단점 중에서 roburstness를 나타내는 SER 성능을 개선키 위하여 양자화 전에 dither 신호를 이용하는 Dithered Signed-Error 개념을 MMA에 적용하였으며, SE-MMA 와 MMA 알고리즘이 갖는 부호간 간섭에 의한 진폭과 위상 찌그러짐을 동시 보상 능력을 갖는다. 논문에서 DSE-MMA 블라인드 등화 알고리즘의 성능을 나타내는 지수로는 등화기 출력 신호, 잔류 isi, MD (Maximum Distortion), MSE와 SER를 사용하였으며, 이들 성능 지수를 적용할 때 SE-MMA 알고리즘과 비교하기 위하여 컴퓨터 시뮬레이션을 수행하였다. 시뮬레이션 결과 DSE-MMA가 SE-MMA 보다 roburstness 와 정상 상태 이후 성능 지수의 양에서 개선됨을 알 수 있었지만, 초기 상태에서 정상 상태에 도달하는 수렴 속도에서는 늦어짐을 확인하였다.
지식과 정보에 대한 접근은 보편적 인권이다. 그러나 2013년 6월 27일 마라케시 조약이 채택된 후에도 대다수 국가에서 시각장애인을 포함한 독서장애인이 접근 가능한 자료는 표준 인쇄물의 1-7%에 불과하고 도서관서비스도 매우 취약하여 도서 기근이 계속되고 있다. 이러한 심각한 격차 및 불평등에 주목한 본 연구는 주요 선진국에서 민간단체가 장애인서비스를 주도하는 미국 Learning Ally와 Bookshare, 영국 RNIB, 프랑스 BNFA, 일본 SAPI를 분석하였다. 주요 내용은 모태와 발전, 법적 근거와 주요 정책, 도서관과의 관계, 회원제도, 서비스 체계와 내용, 대체자료의 개발과 확보, 서비스 제공 실적 등이다. 그리고 도출된 시사점과 마라케시 조약을 기반으로 국내 도서관 장애인서비스 강화를 위한 전략적 과제를 제안하였다. 장애인 '독서장벽 해소를 위한 법률' 제정 촉구, 도서관서비스를 제약하는 「저작권법」 관련 조항 개정, 국립장애인도서관 조직역량 강화, 도서관평가에서 장애인서비스 지표 제고, 광역대표도서관 중심의 도서관 협력시스템 구축과 서비스 확대 등이 시급하다.
현재 시각장애인들이 현금을 사용하게 될 시 지폐가 얼마인지 확인할 방법이 없어 불편을 겪거나 금전적 사기를 당할 위험이 잦다. 한국은행에서는 이러한 사고를 막기 위해 점자 지폐를 만들어 발부하고 있지만 시각장애인 91%가 식별하지 못해 많은 불편을 겪고 있다. 본 논문에서는 딥러닝을 활용하여 화폐를 인식하고 TTS 기술을 사용하여 지폐의 값이 얼마인지 소리로 알려주는 시스템을 개발하였다. 지폐 인식을 위해 데이터를 직접 수집하여 YOLOv5 알고리즘을 활용하여 학습시킨 Weights 파일을 사용하였다. 이를 활용하여 시각장애인들은 더 안전하게 현금을 사용하고, 금전적인 문제를 예방할 수 있다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권3호
/
pp.1700-1721
/
2017
The problem of blocking artifacts is very common in block-based image and video compression, especially at very low bit rates. In this paper, we propose a post-processing method for JPEG-coded image deblocking via sparse representation and adaptive residual threshold. This method includes three steps. First, we obtain the dictionary by online dictionary learning and the compressed images. The dictionary is then modified by the histogram of oriented gradient (HOG) feature descriptor and K-means cluster. Second, an adaptive residual threshold for orthogonal matching pursuit (OMP) is proposed and used for sparse coding by combining blind image blocking assessment. At last, to take advantage of human visual system (HVS), the edge regions of the obtained deblocked image can be further modified by the edge regions of the compressed image. The experimental results show that our proposed method can keep the image more texture and edge information while reducing the image blocking artifacts.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.