• Title/Summary/Keyword: Learning Parameter

Search Result 667, Processing Time 0.027 seconds

The Analysis of Students' Conceptions of Parameter and Development of Teaching-Learning Model (중학생들의 매개변수개념 분석과 교수-학습방안 탐색)

  • 이종희;김부미
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.477-506
    • /
    • 2003
  • In this paper, we analyze nine-grade students' conceptions of parameters, their relation to unknowns and variables and the process of understanding of letters in problem solving of equations and functions. The roles of letters become different according to the letters-used contexts and the meaning of letters Is changed in the process of being used. But, students do not understand the meaning of letters correctly, especially that of parameter. As a result, students operate letters in algebraic expressions according to the syntax without understanding the distinction between the roles. Therefore, the parameter of learning should focus on the dynamic change of roles and the flexible thinking of using letters. We develop a self-regulation model based on the monitoring working question in teaching-learning situations. We expect that this model helps students understand concepts of letters that enable to construct meaning in a concrete context.

  • PDF

Acquisition of English Complex Predicates in SLA

  • Park, Hye-Son
    • English Language & Literature Teaching
    • /
    • v.12 no.2
    • /
    • pp.177-194
    • /
    • 2006
  • Snyder (2001) proposes that complex predicate constructions are interrelated by shared dependence on a single parameter, the Compounding Parameter, and that the global application of the parameter explains the simultaneous acquisition of the complex predicate constructions and N-N compounds in L1 acquisition of English. Slabakova (2002) examined the status of the Compounding Parameter in the acquisition of L2 Spanish by instructed learners. The result of the study, however, was not compatible with the prediction of the Compounding Parameter, possibly due to the availability of negative evidence in the input. Building upon Slabakova's study, this paper examines the status of the Compounding Parameter in naturalistic L2 learning. It is shown that the naturalistic L2 learners do not acquire the complex predicate constructions and N-N compounds concurrently contra to the prediction of the Compounding Parameter. It is suggested that the validity of the Compounding Parameter as a theoretical construct be reconsidered.

  • PDF

An Adaptive Iterative Learning Control and Identification for Uncertain Robotic Systems (불확실한 로봇 시스템을 위한 적응 반복 학습 제어 및 식별)

  • 최준영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.5
    • /
    • pp.395-401
    • /
    • 2004
  • We present an AILC(Adaptive Iterative Learning Control) scheme and a sufficient condition for system parameter identification for uncertain robotic systems that perform the same tasks repetitively. It is guaranteed that the joint velocity and position asymptotically converge to the reference joint velocity and position, respectively. In addition, it is proved that a sufficient condition for parameter identification is the PE(Persistent Excitation) condition on the regressor matrix evaluated at the reference trajectory during the operation period. Since the regressor matrix on the reference trajectory can be easily computed prior to the real robot operation, the proposed algorithm provides a useful method to verify whether the parameter error converges to zero or not.

Num Worker Tuner: An Automated Spawn Parameter Tuner for Multi-Processing DataLoaders

  • Synn, DoangJoo;Kim, JongKook
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.446-448
    • /
    • 2021
  • In training a deep learning model, it is crucial to tune various hyperparameters and gain speed and accuracy. While hyperparameters that mathematically induce convergence impact training speed, system parameters that affect host-to-device transfer are also crucial. Therefore, it is important to properly tune and select parameters that influence the data loader as a system parameter in overall time acceleration. We propose an automated framework called Num Worker Tuner (NWT) to address this problem. This method finds the appropriate number of multi-processing subprocesses through the search space and accelerates the learning through the number of subprocesses. Furthermore, this method allows memory efficiency and speed-up by tuning the system-dependent parameter, the number of multi-process spawns.

A Study on the Initial Stability Calculation of Small Vessels Using Deep Learning Based on the Form Parameter Method (Form Parameter 기법을 활용한 딥러닝 기반의 소형선박 초기복원성 계산에 관한 연구)

  • Dongkeun Lee;Sang-jin Oh;Chaeog Lim;Jin-uk Kim;Sung-chul Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.161-172
    • /
    • 2024
  • Approximately 89% of all capsizing accidents involve small vessels, and despite their relatively high accident rates, small vessels are not subject to ship stability regulations. Small vessels, where the provision of essential basic design documents for stability calculations is omitted, face challenges in directly calculating their stability. In this study, considering that the majority of domestic coastal small vessels are of the Chine-type design, the goal is to establish the major hull form characteristic data of vessels, which can be identified from design documents such as the general arrangement drawing, as input data. Through the application of a deep learning approach, specifically a multilayer neural network structure, we aim to infer hydrostatic curves, operational draft ranges, and more. The ultimate goal is to confirm the possibility of directly calculating the initial stability of small vessels.

Function Approximation Based on a Network with Kernel Functions of Bounds and Locality : an Approach of Non-Parametric Estimation

  • Kil, Rhee-M.
    • ETRI Journal
    • /
    • v.15 no.2
    • /
    • pp.35-51
    • /
    • 1993
  • This paper presents function approximation based on nonparametric estimation. As an estimation model of function approximation, a three layered network composed of input, hidden and output layers is considered. The input and output layers have linear activation units while the hidden layer has nonlinear activation units or kernel functions which have the characteristics of bounds and locality. Using this type of network, a many-to-one function is synthesized over the domain of the input space by a number of kernel functions. In this network, we have to estimate the necessary number of kernel functions as well as the parameters associated with kernel functions. For this purpose, a new method of parameter estimation in which linear learning rule is applied between hidden and output layers while nonlinear (piecewise-linear) learning rule is applied between input and hidden layers, is considered. The linear learning rule updates the output weights between hidden and output layers based on the Linear Minimization of Mean Square Error (LMMSE) sense in the space of kernel functions while the nonlinear learning rule updates the parameters of kernel functions based on the gradient of the actual output of network with respect to the parameters (especially, the shape) of kernel functions. This approach of parameter adaptation provides near optimal values of the parameters associated with kernel functions in the sense of minimizing mean square error. As a result, the suggested nonparametric estimation provides an efficient way of function approximation from the view point of the number of kernel functions as well as learning speed.

  • PDF

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.

Improved Parameter Estimation with Threshold Adaptation of Cognitive Local Sensors

  • Seol, Dae-Young;Lim, Hyoung-Jin;Song, Moon-Gun;Im, Gi-Hong
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.471-480
    • /
    • 2012
  • Reliable detection of primary user activity increases the opportunity to access temporarily unused bands and prevents harmful interference to the primary system. By extracting a global decision from local sensing results, cooperative sensing achieves high reliability against multipath fading. For the effective combining of sensing results, which is generalized by a likelihood ratio test, the fusion center should learn some parameters, such as the probabilities of primary transmission, false alarm, and detection at the local sensors. During the training period in supervised learning, the on/off log of primary transmission serves as the output label of decision statistics from the local sensor. In this paper, we extend unsupervised learning techniques with an expectation maximization algorithm for cooperative spectrum sensing, which does not require an external primary transmission log. Local sensors report binary hard decisions to the fusion center and adjust their operating points to enhance learning performance. Increasing the number of sensors, the joint-expectation step makes a confident classification on the primary transmission as in the supervised learning. Thereby, the proposed scheme provides accurate parameter estimates and a fast convergence rate even in low signal-to-noise ratio regimes, where the primary signal is dominated by the noise at the local sensors.

Prediction of critical heat flux for narrow rectangular channels in a steady state condition using machine learning

  • Kim, Huiyung;Moon, Jeongmin;Hong, Dongjin;Cha, Euiyoung;Yun, Byongjo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1796-1809
    • /
    • 2021
  • The subchannel of a research reactor used to generate high power density is designed to be narrow and rectangular and comprises plate-type fuels operating under downward flow conditions. Critical heat flux (CHF) is a crucial parameter for estimating the safety of a nuclear fuel; hence, this parameter should be accurately predicted. Here, machine learning is applied for the prediction of CHF in a narrow rectangular channel. Although machine learning can effectively analyze large amounts of complex data, its application to CHF, particularly for narrow rectangular channels, remains challenging because of the limited flow conditions available in existing experimental databases. To resolve this problem, we used four CHF correlations to generate pseudo-data for training an artificial neural network. We also propose a network architecture that includes pre-training and prediction stages to predict and analyze the CHF. The trained neural network predicted the CHF with an average error of 3.65% and a root-mean-square error of 17.17% for the test pseudo-data; the respective errors of 0.9% and 26.4% for the experimental data were not considered during training. Finally, machine learning was applied to quantitatively investigate the parametric effect on the CHF in narrow rectangular channels under downward flow conditions.

A Structural Learning of MLP Classifiers Using PfSGA and Its Application to Sign Language Recognition (PfSGA를 이용한 MLP분류기의 구조 학습 및 수화인식에의 응용)

  • 김상운;신성효
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.11
    • /
    • pp.75-83
    • /
    • 1999
  • We propose a PfSGA(parameter-free species genetic algorithm) to learn the topological structure of MLP classifiers being adequate to given applications. The PfSGA is a combinational method of SGA(species genetic algorithm) and PfGA(parameter-free genetic algorithm). In SGA, we divide the total search space into several subspaces(species) according to the number of hidden units, and reduce the unnecessary search by eliminating the low promising species from the evolutionary process. However the performances of SGA classifiers are readily affected by the values of parameters such as mutation ratio and crossover ratio. In this paper, therefore, we combine SGA with PfGA, for which it is not necessary to determine the learning parameters. Experimental results on benchmark data and sign language words show that PfSGA can reduce the learning time of SGA and is not affected by the selection parameter values on structural learning. The results also show that PfSGA is more efficient than the exisiting methods in the aspect of misclassification ratio, learning rate, and complexity of MLP structure.

  • PDF