• Title/Summary/Keyword: Learning Navigation

Search Result 358, Processing Time 0.03 seconds

Deep Learning Algorithm Training and Performance Analysis for Corridor Monitoring (회랑 감시를 위한 딥러닝 알고리즘 학습 및 성능분석)

  • Woo-Jin Jung;Seok-Min Hong;Won-Hyuck Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.6
    • /
    • pp.776-781
    • /
    • 2023
  • K-UAM will be commercialized through maturity after 2035. Since the Urban Air Mobility (UAM) corridor will be used vertically separating the existing helicopter corridor, the corridor usage is expected to increase. Therefore, a system for monitoring corridors is also needed. In recent years, object detection algorithms have developed significantly. Object detection algorithms are largely divided into one-stage model and two-stage model. In real-time detection, the two-stage model is not suitable for being too slow. One-stage models also had problems with accuracy, but they have improved performance through version upgrades. Among them, YOLO-V5 improved small image object detection performance through Mosaic. Therefore, YOLO-V5 is the most suitable algorithm for systems that require real-time monitoring of wide corridors. Therefore, this paper trains YOLO-V5 and analyzes whether it is ultimately suitable for corridor monitoring.K-uam will be commercialized through maturity after 2035.

Prediciton Model for External Truck Turnaround Time in Container Terminal (컨테이너 터미널 내 반출입 차량 체류시간 예측 모형)

  • Yeong-Il Kim;Jae-Young Shin
    • Journal of Navigation and Port Research
    • /
    • v.48 no.1
    • /
    • pp.27-33
    • /
    • 2024
  • Following the COVID-19 pandemic, congestion within container terminals has led to a significant increase in waiting time and turnaround time for external trucks, resulting in a severe inefficiency in gate-in and gate-out operations. In response, port authorities have implemented a Vehicle Booking System (VBS) for external trucks. It is currently in a pilot operation. However, due to issues such as information sharing among stakeholders and lukewarm participation from container transport entities, its improvement effects are not pronounced. Therefore, this study proposed a deep learning-based predictive model for external trucks turnaround time as a foundational dataset for addressing problems of waiting time for external trucks' turnaround time. We experimented with the presented predictive model using actual operational data from a container terminal, verifying its predictive accuracy by comparing it with real data. Results confirmed that the proposed predictive model exhibited a high level of accuracy in its predictions.

Design of Radar Signal Processing System for Drone Detection (드론 검출을 위한 레이다 신호처리 시스템 설계)

  • Hong-suk Kim;Gyu-ri Ban;Ji-hun Seo;Yunho Jung
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.5
    • /
    • pp.601-609
    • /
    • 2024
  • In this paper, we present the design and implementation results of a system that classifies drones from other objects using an FMCW (frequency-modulated continuous wave) radar sensor. The proposed system detects various objects through a four-stage signal processing procedure, consisting of FFT, CFAR, clustering, and tracking, using signals received from the radar sensor. Subsequently, a deep learning process is conducted to classify the detected objects as either drones or other objects. To mitigate the high computational demands and extensive memory requirements of deep learning, a BNN (binary neural network) structure was applied, binarizing the CNN (convolutional neural network) operations. The performance evaluation and verification results demonstrated a drone classification accuracy of 89.33%, with a total execution time of 4 ms, confirming the feasibility of real-time operation.

AI Image Restoration Based on Synthetic Image for Improving Aircraft Optical Detection (AI 기반 항공기 광학 탐지 장치 성능 개선을 위한 합성 이미지 활용 연구)

  • Sang Gyu Jeong;Na Eun Kwon;Hyung Woo Kim
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.5
    • /
    • pp.650-656
    • /
    • 2024
  • This study proposes an AI-based image restoration technique to reduce image distortion caused by lighting and noise in nighttime environments and improve the performance of infrared detection systems. A synthetic image dataset was constructed using visible light images under various lighting conditions and ISO settings, and deep learning models (AutoEncoder and U-Net) were trained to assess image restoration performance. Experimental results show that the Multi-ISO model (9-channel) outperforms the Single-ISO model (3-channel), especially when utilizing input data with multiple ISO values. This study demonstrates that AI models can be effectively trained using synthetic data, even when real data collection is challenging, and can be applied to image restoration tasks. These findings are expected to contribute to enhancing the performance of optical detection systems through AI-based technology.

Study on Structure Visual Inspection Technology using Drones and Image Analysis Techniques (드론과 이미지 분석기법을 활용한 구조물 외관점검 기술 연구)

  • Kim, Jong-Woo;Jung, Young-Woo;Rhim, Hong-Chul
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.6
    • /
    • pp.545-557
    • /
    • 2017
  • The study is about the efficient alternative to concrete surface in the field of visual inspection technology for deteriorated infrastructure. By combining industrial drones and deep learning based image analysis techniques with traditional visual inspection and research, we tried to reduce manpowers, time requirements and costs, and to overcome the height and dome structures. On board device mounted on drones is consisting of a high resolution camera for detecting cracks of more than 0.3 mm, a lidar sensor and a embeded image processor module. It was mounted on an industrial drones, took sample images of damage from the site specimen through automatic flight navigation. In addition, the damege parts of the site specimen was used to measure not only the width and length of cracks but white rust also, and tried up compare them with the final image analysis detected results. Using the image analysis techniques, the damages of 54ea sample images were analyzed by the segmentation - feature extraction - decision making process, and extracted the analysis parameters using supervised mode of the deep learning platform. The image analysis of newly added non-supervised 60ea image samples was performed based on the extracted parameters. The result presented in 90.5 % of the damage detection rate.

Machine Learning Based Structural Health Monitoring System using Classification and NCA (분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템)

  • Shin, Changkyo;Kwon, Hyunseok;Park, Yurim;Kim, Chun-Gon
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • This is a pilot study of machine learning based structural health monitoring system using flight data of composite aircraft. In this study, the most suitable machine learning algorithm for structural health monitoring was selected and dimensionality reduction method for application on the actual flight data was conducted. For these tasks, impact test on the cantilever beam with added mass, which is the simulation of damage in the aircraft wing structure was conducted and classification model for damage states (damage location and level) was trained. Through vibration test of cantilever beam with fiber bragg grating (FBG) sensor, data of normal and 12 damaged states were acquired, and the most suitable algorithm was selected through comparison between algorithms like tree, discriminant, support vector machine (SVM), kNN, ensemble. Besides, through neighborhood component analysis (NCA) feature selection, dimensionality reduction which is necessary to deal with high dimensional flight data was conducted. As a result, quadratic SVMs performed best with 98.7% for without NCA and 95.9% for with NCA. It is also shown that the application of NCA improved prediction speed, training time, and model memory.

Deep Learning Based Pine Nut Detection in UAV Aerial Video (UAV 항공 영상에서의 딥러닝 기반 잣송이 검출)

  • Kim, Gyu-Min;Park, Sung-Jun;Hwang, Seung-Jun;Kim, Hee Yeong;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2021
  • Pine nuts are Korea's representative nut forest products and profitable crops. However, pine nuts are harvested by climbing the trees themselves, thus the risk is high. In order to solve this problem, it is necessary to harvest pine nuts using a robot or an unmanned aerial vehicle(UAV). In this paper, we propose a deep learning based detection method for harvesting pine nut in UAV aerial images. For this, a video was recorded in a real pine forest using UAV, and a data augmentation technique was used to supplement a small number of data. As the data for 3D detection, Unity3D was used to model the virtual pine nut and the virtual environment, and the labeling was acquired using the 3D transformation method of the coordinate system. Deep learning algorithms for detection of pine nuts distribution area and 2D and 3D detection of pine nuts objects were used DeepLabV3+, YOLOv4, and CenterNet, respectively. As a result of the experiment, the detection rate of pine nuts distribution area was 82.15%, the 2D detection rate was 86.93%, and the 3D detection rate was 59.45%.

Artificial neural network controller for automatic ship berthing using head-up coordinate system

  • Im, Nam-Kyun;Nguyen, Van-Suong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.235-249
    • /
    • 2018
  • The Artificial Neural Network (ANN) model has been known as one of the most effective theories for automatic ship berthing, as it has learning ability and mimics the actions of the human brain when performing the stages of ship berthing. However, existing ANN controllers can only bring a ship into a berth in a certain port, where the inputs of the ANN are the same as those of the teaching data. This means that those ANN controllers must be retrained when the ship arrives to a new port, which is time-consuming and costly. In this research, by using the head-up coordinate system, which includes the relative bearing and distance from the ship to the berth, a novel ANN controller is proposed to automatically control the ship into the berth in different ports without retraining the ANN structure. Numerical simulations were performed to verify the effectiveness of the proposed controller. First, teaching data were created in the original port to train the neural network; then, the controller was tested for automatic berthing in other ports, where the initial conditions of the inputs in the head-up coordinate system were similar to those of the teaching data in the original port. The results showed that the proposed controller has good performance for ship berthing in ports.

AdaBoost-Based Gesture Recognition Using Time Interval Trajectory Features (시간 간격 특징 벡터를 이용한 AdaBoost 기반 제스처 인식)

  • Hwang, Seung-Jun;Ahn, Gwang-Pyo;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.247-254
    • /
    • 2013
  • The task of 3D gesture recognition for controlling equipments is highly challenging due to the propagation of 3D smart TV recently. In this paper, the AdaBoost algorithm is applied to 3D gesture recognition by using Kinect sensor. By tracking time interval trajectory of hand, wrist and arm by Kinect, AdaBoost algorithm is used to train and classify 3D gesture. Experimental results demonstrate that the proposed method can successfully extract trained gestures from continuous hand, wrist and arm motion in real time.

Threat Assessment of Anti-Ship Ballistic Missile (ASBM) of North Korea (북한 대함탄도미사일 위협 분석)

  • Park, Younghan;Oh, Kyungwon;Kim, Jiwon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • This paper provides an empirical assessment of the development of North Korea's Anti-Ship Ballistic Missile (ASBM), and its influence on South Korea's maritime strategy. While research studies on North Korea's ballistic-missile capabilities and South Korea's ballistic-missile defense systems are proliferating, less analytical attention has been given to the way that the strengthening of North Korea's ballistic-missile capacities presents a critical threat to the ROK's navy and lines of communication. The authors of this paper identify the continuing development of unique ASBM capabilities by China and Iran, and determine that such processes are mutually interactive and in accordance with threat perceptions; furthermore, North Korea can enact the same process by learning lessons from these nations. The findings of this paper provide an implication for the formulation of South Korea's maritime strategy and the related assets in consideration of the ASBM as a future threat.