• Title/Summary/Keyword: Learning Navigation

Search Result 358, Processing Time 0.021 seconds

Multi-Object Goal Visual Navigation Based on Multimodal Context Fusion (멀티모달 맥락정보 융합에 기초한 다중 물체 목표 시각적 탐색 이동)

  • Jeong Hyun Choi;In Cheol Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.9
    • /
    • pp.407-418
    • /
    • 2023
  • The Multi-Object Goal Visual Navigation(MultiOn) is a visual navigation task in which an agent must visit to multiple object goals in an unknown indoor environment in a given order. Existing models for the MultiOn task suffer from the limitation that they cannot utilize an integrated view of multimodal context because use only a unimodal context map. To overcome this limitation, in this paper, we propose a novel deep neural network-based agent model for MultiOn task. The proposed model, MCFMO, uses a multimodal context map, containing visual appearance features, semantic features of environmental objects, and goal object features. Moreover, the proposed model effectively fuses these three heterogeneous features into a global multimodal context map by using a point-wise convolutional neural network module. Lastly, the proposed model adopts an auxiliary task learning module to predict the observation status, goal direction and the goal distance, which can guide to learn the navigational policy efficiently. Conducting various quantitative and qualitative experiments using the Habitat-Matterport3D simulation environment and scene dataset, we demonstrate the superiority of the proposed model.

Aerial Scene Labeling Based on Convolutional Neural Networks (Convolutional Neural Networks기반 항공영상 영역분할 및 분류)

  • Na, Jong-Pil;Hwang, Seung-Jun;Park, Seung-Je;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.484-491
    • /
    • 2015
  • Aerial scene is greatly increased by the introduction and supply of the image due to the growth of digital optical imaging technology and development of the UAV. It has been used as the extraction of ground properties, classification, change detection, image fusion and mapping based on the aerial image. In particular, in the image analysis and utilization of deep learning algorithm it has shown a new paradigm to overcome the limitation of the field of pattern recognition. This paper presents the possibility to apply a more wide range and various fields through the segmentation and classification of aerial scene based on the Deep learning(ConvNet). We build 4-classes image database consists of Road, Building, Yard, Forest total 3000. Each of the classes has a certain pattern, the results with feature vector map come out differently. Our system consists of feature extraction, classification and training. Feature extraction is built up of two layers based on ConvNet. And then, it is classified by using the Multilayer perceptron and Logistic regression, the algorithm as a classification process.

Development of tangible language content system based on voice recording (음성녹음 기반의 실감형 어학시스템 콘텐츠 개발)

  • Na, Jong-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.2
    • /
    • pp.234-239
    • /
    • 2013
  • Learning a lesson about poor concentration and problems of the existing content, the system of language which could not be determined, Many teachers' assessment decision was made. As a result, voice recording based on the combination of ubiquitous technology and virtual reality technology, and install the projector in a classroom Through the learning content corresponding grade English student ID card attached RFID reader in each classroom, and students of RFID tags attached. In reality of the virtual three-dimensional image content foreigners and question-and-answer using the voice recording technology at the same time check the pronunciation and intonation level passes or level failure judged. Student education data to a central server system is configured to do so after saving to the DB through a feedback process, which provides information. Analysis of the issues that can have a common language content in the present study and Problem for voice recording technology to solve the problem and did not solve the existing language in the content level based classes.

Deep Learning-based Action Recognition using Skeleton Joints Mapping (스켈레톤 조인트 매핑을 이용한 딥 러닝 기반 행동 인식)

  • Tasnim, Nusrat;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Recently, with the development of computer vision and deep learning technology, research on human action recognition has been actively conducted for video analysis, video surveillance, interactive multimedia, and human machine interaction applications. Diverse techniques have been introduced for human action understanding and classification by many researchers using RGB image, depth image, skeleton and inertial data. However, skeleton-based action discrimination is still a challenging research topic for human machine-interaction. In this paper, we propose an end-to-end skeleton joints mapping of action for generating spatio-temporal image so-called dynamic image. Then, an efficient deep convolution neural network is devised to perform the classification among the action classes. We use publicly accessible UTD-MHAD skeleton dataset for evaluating the performance of the proposed method. As a result of the experiment, the proposed system shows better performance than the existing methods with high accuracy of 97.45%.

The Study on Marker-less Tracking for the Car Mechanics e-Training AR(Augmented Reality) System (자동차 정비 e-Training 증강현실 시스템에서의 Marker-less Tracking 방안 연구)

  • Yoon, Ji-Yean;Kim, Yu-Doo;Moon, Il-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.264-270
    • /
    • 2012
  • e-Training focusing on the experience and practice accelerates actual-active learning and enforces the learning effects against the existing theory based education. The most typical hans-on training system is augmented reality. Especially, in the training field installed augmented reality system, the automobile maintenance trainee experiences effective training with the immediate information, which is indicating the location of parts and the procedure of repairing. The tracking is the core technology of the augmented reality system. The performance of augmented reality system depends on the tracking technology. Therefore, this paper suggests the tracking technology which is proper to the e-Training augmented reality service technology for the car mechanics.

Fuzzy Neural Networks-Based Call Admission Control Using Possibility Distribution of Handoff Calls Dropping Rate for Wireless Networks (핸드오프 호 손실율 가능성 분포에 의한 무선망의 퍼지 신경망 호 수락제어)

  • Lee, Jin-Yi
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.6
    • /
    • pp.901-906
    • /
    • 2009
  • This paper proposes a call admission control(CAC) method for wireless networks, which is based on the upper bound of a possibility distribution of handoff calls dropping rates. The possibility distribution is estimated in a fuzzy inference and a learning algorithm in neural network. The learning algorithm is considered for tuning the membership functions(then parts)of fuzzy rules for the inference. The fuzzy inference method is based on a weighted average of fuzzy sets. The proposed method can avoid estimating excessively large handoff calls dropping rates, and makes possibile self-compensation in real time for the case where the estimated values are smaller than real values. So this method makes secure CAC, thereby guaranteeing the allowed CDR. From simulation studies we show that the estimation performance for the upper bound of call dropping rate is good, and then handoff call dropping rates in CAC are able to be sustained below user's desired value.

  • PDF

Forecasting of Short Term Photovoltaic Generation by Various Input Model in Supervised Learning (지도학습에서 다양한 입력 모델에 의한 초단기 태양광 발전 예측)

  • Jang, Jin-Hyuk;Shin, Dong-Ha;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.478-484
    • /
    • 2018
  • This study predicts solar radiation, solar radiation, and solar power generation using hourly weather data such as temperature, precipitation, wind direction, wind speed, humidity, cloudiness, sunshine and solar radiation. I/O pattern in supervised learning is the most important factor in prediction, but it must be determined by repeated experiments because humans have to decide. This study proposed four input and output patterns for solar and sunrise prediction. In addition, we predicted solar power generation using the predicted solar and solar radiation data and power generation data of Youngam solar power plant in Jeollanamdo. As a experiment result, the model 4 showed the best prediction results in the sunshine and solar radiation prediction, and the RMSE of sunshine was 1.5 times and the sunshine RMSE was 3 times less than that of model 1. As a experiment result of solar power generation prediction, the best prediction result was obtained for model 4 as well as sunshine and solar radiation, and the RMSE was reduced by 2.7 times less than that of model 1.

Development of a New Munk-type Breaker Height Formula Using Machine Learning (머신러닝을 이용한 새로운 Munk-type 쇄파파고 예측식의 제안)

  • Choi, Byung-Jong;Nam, Hyung-Sik;Lee, Kwang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.165-172
    • /
    • 2021
  • Breaking wave is one of the important design factors in the design of coastal and port structures as they are directly related to various physical phenomena occurring on the coast, such as onshore currents, sediment transport, shock wave pressure, and energy dissipation. Due to the inherent complexity of the breaking wave, many empirical formulas have been proposed to predict breaker indices such as wave breaking height and breaking depth using hydraulic models. However, the existing empirical equations for breaker indices mainly were proposed via statistical analysis of experimental data under the assumption of a specific equation. In this study, a new Munk-type empirical equation was proposed to predict the height of breaking waves based on a representative linear supervised machine learning technique with high predictive performance in various research fields related to regression or classification challenges. Although the newly proposed breaker height formula was a simple polynomial equation, its predictive performance was comparable to that of the currently available empirical formula.

Machine Learning-based Stroke Risk Prediction using Public Big Data (공공빅데이터를 활용한 기계학습 기반 뇌졸중 위험도 예측)

  • Jeong, Sunwoo;Lee, Minji;Yoo, Sunyong
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.96-101
    • /
    • 2021
  • This paper presents a machine learning model that predicts stroke risks in atrial fibrillation patients using public big data. As the training data, 68 independent variables including demographic, medical history, health examination were collected from the Korean National Health Insurance Service. To predict stroke incidence in patients with atrial fibrillation, we applied deep neural network. We firstly verify the performance of conventional statistical models (CHADS2, CHA2DS2-VASc). Then we compared proposed model with the statistical models for various hyperparameters. Accuracy and area under the receiver operating characteristic (AUROC) were mainly used as indicators for performance evaluation. As a result, the model using batch normalization showed the highest performance, which recorded better performance than the statistical model.

A slide reinforcement learning for the consensus of a multi-agents system (다중 에이전트 시스템의 컨센서스를 위한 슬라이딩 기법 강화학습)

  • Yang, Janghoon
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.4
    • /
    • pp.226-234
    • /
    • 2022
  • With advances in autonomous vehicles and networked control, there is a growing interest in the consensus control of a multi-agents system to control multi-agents with distributed control beyond the control of a single agent. Since consensus control is a distributed control, it is bound to have delay in a practical system. In addition, it is often difficult to have a very accurate mathematical model for a system. Even though a reinforcement learning (RL) method was developed to deal with these issues, it often experiences slow convergence in the presence of large uncertainties. Thus, we propose a slide RL which combines the sliding mode control with RL to be robust to the uncertainties. The structure of a sliding mode control is introduced to the action in RL while an auxiliary sliding variable is included in the state information. Numerical simulation results show that the slide RL provides comparable performance to the model-based consensus control in the presence of unknown time-varying delay and disturbance while outperforming existing state-of-the-art RL-based consensus algorithms.