• Title/Summary/Keyword: Learning Media

Search Result 1,614, Processing Time 0.022 seconds

A Smartphone-based Virtual Reality Visualization System for Human Activities Classification

  • Lomaliza, Jean-Pierre;Moon, Kwang-Seok;Park, Hanhoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.45-46
    • /
    • 2018
  • This paper focuses on human activities monitoring problem using onboard smartphone sensors as data generator. Monitoring such activities can be very important to detect anomalies and prevent disease from patients. Machine learning (ML) algorithms appear to be ideal approaches to use for processing data from smartphone to get sense of how to classify human activities. ML algorithms depend on quality, the quantity and even more important, the properties or features, that can be learnt from data. This paper proposes a mobile virtual reality visualization system that helps to view data representation in a very immersive way so that its quality and discriminative characteristics may be evaluated and improved. The proposed system comes as well with a handy data collecting application that can be accessed directly by the VR visualization part.

  • PDF

Development of Automative Loudness Control Technique based on Audio Contents Analysis using Deep Learning (딥러닝을 이용한 오디오 콘텐츠 분석 기반의 자동 음량 제어 기술 개발)

  • Lee, Young Han;Cho, Choongsang;Kim, Je Woo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.42-43
    • /
    • 2018
  • 국내 디지털 방송 프로그램은 2016년 방송법 개정 이후, ITU-R / EBU에서 제안한 측정 방식을 활용하여 채널 및 프로그램 간의 음량을 맞추어 제공되고 있다. 일반적으로 뉴스나 중계와 같이 실시간으로 음량을 맞춰야 하는 분야를 제외하고는 평균 음량을 규정에 맞춰 송출하고 있다. 본 논문에서는 일괄적으로 평균 음량을 맞출 경우 발생하는 저음량의 명료도를 높이기 위한 기술을 제안한다. 즉, 방송 음량을 조절하는 기술 중의 하나로 오디오 콘텐츠를 분석하여 구간별 음량 조절 정도를 달리함으로써 저음량에서의 음성은 상대적으로 높은 음량을 가지고 배경음악 등을 상대적으로 낮음 음량을 가지도록 생성함으로써 명료도를 높이는 방식을 제안한다. 제안한 방식의 성능을 확인하기 위해 오디오 콘텐츠 분석 정확도 측정과 오디오 파형 분석을 실시하였으며 이를 통해 기존의 음량 제어 기술과 비교하여 음성 구간에 대해 음량을 증폭시키는 것을 확인하였다.

  • PDF

Multiple Classification of Audio Genre and Quality based on Deep Learning (딥 러닝 기반의 오디오 장르 및 품질의 다중 분류 기술)

  • Shin, Seonghyeon;Cho, Hyojin;Jang, Won;Park, Hochong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.53-54
    • /
    • 2018
  • 본 논문에서는 스펙트로그램을 이용하여 딥 러닝 기반으로 오디오 장르와 품질의 다중 정보를 동시에 분류하는 기술을 제안한다. 기존 딥 러닝 기반의 오디오 정보 인식 기술은 각각의 정보 인식을 목표로 독립 네트워크를 설계하고, 여러 정보를 동시에 인식하기 위하여 각각에 특화된 여러 네트워크를 사용한다. 이러한 문제점을 보완하기 위해 본 논문에서는 디지털 오디오의 대표 특성인 스펙트로그램을 기반으로 범용성이 있는 특성을 추출하고, 단일 네트워크로 학습시켜 장르 및 품질을 동시에 분류하는 다중 분류 기술을 제안한다. 제안하는 방법으로 단일 분류 성능과 유사한 다중 분류 성능을 얻을 수 있다.

  • PDF

Deep Learning based Inter Prediction Coding Technique (딥러닝 기반 화면 간 예측 부호화 기법)

  • Lee, Jung Kyung;Kang, Jewon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.276-279
    • /
    • 2018
  • 본 논문에서는 비디오 부호화 과정 중 화면 간 예측 부호화 과정에 딥러닝을 적용하여 부호화 효율을 제고하는 알고리즘을 제안한다. 보다 구체적으로 딥러닝으로 생성한 가상의 픽쳐를 현재 프레임의 참조 픽쳐로 사용하는 방법에 대해 설명한다. 부호화 과정에서 복원된 픽쳐 두 장을 이용하여 가상의 보간 픽쳐를 생성하고 생성된 보간 픽쳐를 참조 프레임으로 사용하여 화면 간 예측의 효율을 높인다. 실험에 따르면 참조 픽쳐 리스트를 수정하여 참조 구조를 변경함으로써 HEVC 참조 코덱인 HM 16.9 대비 평균 1.4%의 BD-rate 감소 효율을 제공하였다.

  • PDF

Lane departure detection method using driving lane recognition based on deep learning (딥러닝 기반 주행 차로 인식 기법을 활용한 차선 변경 검출 기술)

  • Lee, Kyung-Min;Song, Hyok;Kim, Je Woo;Choi, Byeongho;Lin, Chi-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.332-333
    • /
    • 2018
  • 본 논문에서는 딥러닝 기반의 주행 차로 인식 기법을 활용한 차선 변경 검출 기술을 제안한다. 제안한 방법은 주행 차로, 좌우 차로, 차량 등 3 종의 이미지 데이터를 학습, 검증, 실험 데이터로 나눠 활용하였다. 주행 차로 및 차선 변경 인식을 위하여 변형된 AlexNet 모델을 개발하였다. 실험 결과 주행 차로 69.45%, 좌우 차로 66.9%, 차량 76.4%의 인식률 결과를 보여 기존 패턴인식 방법과 비교하여 우수한 결과를 보였다.

  • PDF

Development of Broadcast Content Class Classification System based on Deep Learning (딥러닝 기반 방송 콘텐츠 클래스 분류 시스템 개발)

  • Kim, Shin;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.334-335
    • /
    • 2018
  • 최근 수 년간 비디오 콘텐츠 소비 공간이 인터넷으로 확장되며 지능적 비디오 콘텐츠 추천 기술 개발이 진행되어 왔다. 하지만 지능적 비디오 콘텐츠 추천 기술은 사용자의 기호나 업로드된 비디오 콘텐츠의 제목 등을 기반으로 하여 비디오 콘텐츠 클래스에 대한 분석 없이 유사한 비디오 콘텐츠를 탐색하고 추천해주는 기술이 대부분이다. 본 논문에서는 지능적 콘텐츠 추천을 위한 딥러닝 기반 방송 콘텐츠 클래스 분류 시스템을 제안한다. 방송 콘텐츠 내 영상 정보를 이용하여 방송 콘텐츠 클래스를 분류하며 높은 분류 정확도를 보여주는 것을 확인할 수 있다.

  • PDF

Deep-learning based Object Detection in Thermal Video Using Compressed-Domain Information (열영상에서 압축 도메인 정보를 이용한 딥러닝 기반 객체 탐지 방법)

  • Byeon, JooHyung;Nam, Gunook;Park, Jangsoo;Lee, Jongseok;Sim, Donggyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.160-162
    • /
    • 2018
  • 본 논문에서는 압축 영역에서 열 영상을 이용한 딥러닝 기반의 객체 검출 방법을 제안한다. 비디오 압축 표준인 High Efficiency Video Coding(HEVC)를 이용하여 부보화된 비트스트림으로부터 Intra Prediction Mode(IPM), Prediction Unit Size(PUS), Transform Unit Size(TUS)를 추출하고 3 채널 영상으로 변환하고 객체 검출 네트워크인 YOLO 에 입력으로 넣어주어 최종적으로 객체의 위치 및 객체의 종류를 예측한다. 실험결과로써 복원된 열 영상과 검출된 결과를 주관적으로 보여줌으로써 압축영역에서 열영상을 이용한 객체 검출이 가능함을 보인다.

  • PDF

Comparative Analysis of Deep Learning Based Frame Interpolation Methods for HD Videos and Patch-wise Training Methods (딥러닝 기반 비디오 보간법의 패치 단위 학습과 고해상도 비디오를 이용한 비교 분석 실험)

  • Kim, Nayoung;Kang, Je-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.217-220
    • /
    • 2018
  • 본 논문에서는 딥러닝을 활용한 비디오 보간법(video interpolation)에 대한 최근 모델들을 HD 급 비디오로 학습시키는 방법과 평가 성능을 비교 분석하는 것을 목표로 한다. 기존의 딥러닝을 활용한 비디오 보간법에 대해 제안된 모델들은 낮은 해상도의 비디오로 실험을 진행하였다. 반면 본 연구에서는 한정된 메모리를 가지고도 높은 해상도의 비디오를 학습시키기 위해서 패치 단위 데이터 셋을 구성하여 학습을 진행하였다. 평가 성능을 보이기 위해서 학습 데이터와 마찬가지로 패치 단위 평가와 전체 프레임 단위 평가 성능의 결과를 비교한다.

  • PDF

SIFT Image Feature Detect based on Deep learning (딥 러닝 기반의 SIFT 이미지 특징 검출)

  • Lee, Jae-Eun;Moon, Won-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.122-123
    • /
    • 2018
  • 본 논문에서는 옥타브(sacle vector, octave)를 0, 시그마(sigma)는 1.6, 간격(intervals)은 3으로 설정하여 검출한 RobHess SIFT 특징들로 데이터 셋을 만들어 딥 러닝 모델인 VGG-16을 기반으로 SIFT 이미지 특징을 검출하는 방법을 제안한다. DIV2K 데이터 셋을 $33{\times}33$ 크기로 잘라서 데이터 셋을 구성하였고, 흑백 영상으로 판별하는 SIFT와는 달리 RGB 영상을 사용 하였다. 영상을 좌 우 반전, 밝기, 회전, 크기를 조절하여 원본 영상을 변형시켜 네트워크 학습 및 평가를 진행하였다. 네트워크는 영상의 가운데에 위치한 픽셀이 특징점인지 아닌지를 판별한다. 검증 데이터의 결과 98.207%의 정확도를 얻었다.

  • PDF

Deep Learning based Sentence Analysis for Query Generation (검색어 생성을 위한 딥 러닝 기반 문장 분석 연구)

  • Na, Seong-Won;Yoon, Kyoungro
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.336-337
    • /
    • 2018
  • 최근 이미지의 Visual 정보를 추출하고 Multi label 분류를 통해 나온 결과의 상관관계를 modeling하여 문장으로 출력하는 CNN-RNN 아키텍처가 많은 발전을 이뤘다. 이 아키텍처의 출력은 이미지의 정보가 요약되어 문장으로 표현되기 때문에 Semantic정보가 풍부하여 유사 콘텐츠 검색에도 사용 가능하다. 하지만 결과 문장에 사람이 포함 되면 광범위한 검색 결과를 얻게 되고 부정확한 결과를 초래하게 된다. 이에 본 논문에서는 문장에서 사람을 인식하여 Identity를 부여함으로써 검색어를 좀 더 구체적으로 생성하고자 한다. 이 문제를 해결하기 위해 자연어 처리의 분야 중 하나인 개체명 인식(Named Entity Recognition) 문제로 다루며, 가장 많이 사용되고 있는 모델인 Bidirectional-LSTM-CRF와 CoNLL2003 dataset을 사용하여 수행 한다.

  • PDF