• Title/Summary/Keyword: Lead Ion

Search Result 311, Processing Time 0.033 seconds

Rapid Charger for 48V Lead-acid Battery (48V용 납축전지 급속 충전기)

  • Ahn, S.H.;Jang, S.R.;Ryoo, H.J.;Mo, S.C.;Oh, S.W.;Park, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.945_946
    • /
    • 2009
  • This paper describes the development of the rapid battery charger for lead-acid battery. Due to heat which is caused by increased internal resistance during charging, it is difficult to increase charging current for the lead-acid battery. In this paper, the rapid charging algorithm which apply short discharging pulse current during charging procedure is developed and it makes the ion layer, which is generated during charging time, disappeared into electrolyte. The prototype battery charger based on resonant converter is developed for 48V battery charger and test procedure is introduced.

  • PDF

Anodic Oxidation of Iodate to Periodate by Lead Peroxide Anode (전착과산화납양극에 의한 옥소산염 전해산화)

  • Chong Woo Nam;Hak Joon Kim
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.324-329
    • /
    • 1971
  • In order to evaluate the mechanism of electrolytic oxidation of iodate and to determine the optimum conditions for the electrolysis, studies were made using the cells without diaphragm and the lead peroxide anode. Results are summarized as followings: 1) Current density vs. anode potential curve by lead peroxide electrode had the different limiting current densities from platinum electrode and was more positive than platinum electrode. 2) Additions of potassium bichromate in the electrolyte contribute to maintain high current efficiency. 3) In the acid and alkaline regions, the current efficiencies decreased by reduction of iodate and discharge of hydroxyl ion, so maximum current efficiency was shown at pH 7. 4) Higher current density lowered the current efficiency in the region of 60-80% conversion of iodate. 5) Influence of the conversion on current efficiency in the region of 60-80% conversion of iodate.

  • PDF

A SOLUTION TO THE PROBLEM WITH ABSORBED DOSE

  • Braby, Leslie A.
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.533-538
    • /
    • 2008
  • In some situations, for example at very low doses, in microbeam irradiation experiments, or around high energy heavy ion tracks, use of the absorbed dose to describe the energy transferred to the irradiated target can be misleading. Since absorbed dose is the expected value of energy per mass it takes into account all of the targets which do not have any energy deposition. In many situations that results in numerical values, in Joules per kg, which are much less than the energy deposited in targets that have been crossed by a charged particle track. This can lead to confusion about the biochemical processes that lead to the consequences of irradiation. There are a few alternative approaches to describing radiation that avoid this potential confusion. Examples of specific situations that can lead to confusion are given. It is concluded that using the particle radiance spectrum and the exposure time, instead of absorbed dose, to describe these irradiations minimizes the potential for confusion about the actual nature of the energy deposition.

Resistance against Chloride Ion and Sulfate Attack of Cementless Concrete (무시멘트 콘크리트의 염소이온 침투 및 황산염 침투 저항성)

  • Lee, Hyun-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jeon, Jun-Tai
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.63-69
    • /
    • 2015
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the resistance against chloride ion and sulfate attack of the cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28 and 91 days, respectively. To evaluate the resistance to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete with decreasing water-binder ratio.

Synthesis and Characterization of Adsorbent for Pb(II)-capture by using Glow Discharge Electrolysis Plasma

  • Gao, Jinzhang;Wang, Youdi;Yang, Wu;Li, Yan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.406-414
    • /
    • 2010
  • A novel polyacrylamide grafted hydrous ferric oxide adsorbent composite has been synthesized by using glow discharge electrolysis plasma. To optimize the synthesis conditions, the following parameters were examined in detail: applied power, discharge time, post polymerization temperature, post polymerization time, amount of crosslinking agent and hydrous ferric oxide gel added and so on. The adsorbent was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The removal percentage of the adsorbent in Pb(II) solution was examined and the data obtained showed that the adsorbent composite has a high capacity for lead ion. For the use in wastewater treatment, the thermodynamic and kinetic of Pb(II)-capture were also studied. Results indicated that the adsorption reaction was a spontaneous and an endothermic process, and it seems to be obeyed a pseudo-secondorder rate model. Moreover, the adsorption isotherm of Pb(II)-capture is following the Langmuir and Freundlich isotherm models.

Crystallization of Coprecipitates Prepared from Lead Nitrate and Titanium Tetrachloride (질산납과 사염화티탄으로부터 제조된 공침물의 결정화)

  • Choe, Byeong-Cheol;Lee, Mun-Ho
    • Korean Journal of Materials Research
    • /
    • v.4 no.5
    • /
    • pp.541-549
    • /
    • 1994
  • The crystallization behavior and structural change of amorphous $PbTiO_{3}$ precursors prepared by coprecipitation method were investigated by XRD, Raman spectra, TEM, and RDF. The precursors were prepared at $45^{\circ}C$ and pH of 9 from a mixed solution of lead nitrate and titanium tetrachloride derived using $H_2O_2$ or $NH_4NO_3$ as an ion stabilizer. The activation energy and temperature for crystallization of the coprecipitate prepared using $NH_4NO_3$ as an ion stabilizer were lower than that derived from the solution containing $H_2O_2$ stabilizer. The amorphous coprecipitate transformed to transient phase and then to crystalline $PbTiO_{3}$. Average interatomic distances of amorphous states decreased with increasing heat-treatment temperature.

  • PDF

Effective adsorption of lead and copper from aqueous solution by samaneasaman and banana stem

  • Harish, Narayana;Janardhan, Prashanth;Sangami, Sanjeev
    • Advances in environmental research
    • /
    • v.7 no.3
    • /
    • pp.225-237
    • /
    • 2018
  • The sorption of metal ions with low-cost adsorbents plays an important role in sustainable development. In the present study, the efficacy of sugarcane bagasse, rain tree fruits (samaneasaman), banana stem and their mixtures, used as bio-sorbents, in the removal of Cu(II) and Pb(II) ions from aqueous solution is evaluated. Batch studies are conducted, and residual ions were measured using Inductively Coupled Plasma (ICP)-atomic spectrometer. Effect of pH, initial metal ion concentration, reaction time and adsorbent dosage are studied. The Pb(II) removal efficiency was observed to be 97.88%, 98.60% and 91.74% for rain tree fruits, banana stem and a mixture of adsorbents respectively. The highest Cu(II) ion removal was observed for sugarcane bagasse sorbent with an efficiency of 82.10% with a pH of 4.5 and a reaction time of 90 min. Finally, desorption studies were carried out to study the leaching potential of adsorbent, and it was found that the adsorbent is stable in water than the other leaching agents such as HCl, ammonium acetate, Sodium EDTA. Hence, these adsorbents can be effectively used for the removal of these heavy metals.

Heavy Metal Removal using Sawdust (톱밥을 이용한 중금속 제거에 관한 연구)

  • Jeon, Choong;Kim, Jung Hwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.2
    • /
    • pp.81-88
    • /
    • 2007
  • A study on the removal of heavy metals using sawdust was performed. Among heavy metals such as lead, copper and cadmium ions, uptake capacity of lead ions was the highest as about 0.22 mmol/g-dry mass at pH 4. The surface condition and existence of lead ions onto the sawdust was confirmed by the FT-IR, SEM (Scanning Electron Microscopy), and EDX (Energy Dispersive X-ray) instrumental analyses. When 0.5g of sawdust was added to initial lead solution (100ppm) removal efficiency was approximately 90%. Isothermal adsorption curve for lead ions was described by the Langmuir model equation and experimental data well fitted to model equation. Most adsorption for lead ions was also completed within 60min and pH of lead solution from 5.8 to 4.5 decreased with time.

  • PDF

Accurate Measurement of Isotope Amount Ratios of Lead in Bronze with Multicollector Inductively Coupled Plasma Mass Spectrometry

  • Lee, Kyoung-Seok;Kim, Jin-Il;Yim, Yong-Hyeon;Hwang, Euijin;Kim, Tae Kyu
    • Mass Spectrometry Letters
    • /
    • v.4 no.4
    • /
    • pp.87-90
    • /
    • 2013
  • Isotope amount ratios of lead in a bronze sample have been successfully determined using multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS). Matrix separation conditions were tested and optimized using ion exchange chromatography with anion-exchange resin, AG1-X8, and sequential elution of the 0.5 M HBr and 7 M $HNO_3$ to separate lead from very high contents of copper and tin in bronze matrix. Mercury was also removed efficiently in the optimized separation condition. The instrumental isotope fractionation of lead in the MC-ICP-MS measurement was corrected by the external standard sample bracketing method using an external standard, NIST SRM 981 lead common isotope ratio standard followed by correction of procedure blank to obtain reliable isotope ratios of lead. The isotope ratios, $^{206}Pb/^{204}Pb$, $^{207}Pb/^{204}Pb$, $^{208}Pb/^{204}Pb$, and $^{208}Pb/^{206}Pb$, of lead were determined as $18.0802{\pm}0.0114$, $15.5799{\pm}0.0099$, $38.0853{\pm}0.0241$, and $2.1065{\pm}0.0004$, respectively, and the determined isotope ratios showed good agreement with the reference values of an international comparison for the same sample within the stated uncertainties

Evaluation of Biological and Physico-chemical Detoxification Methods for the Removal of Inhibitors in Lignocellulose Hydrolysate (목질계 바이오매스 가수분해물 중 발효저해 물질에 대한 생물학적 및 물리화학적 무독화 방법의 평가)

  • Cho, Dae-Haeng;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.24 no.5
    • /
    • pp.415-419
    • /
    • 2009
  • In this study, the detoxification methods were evaluated for the removal of fermentation inhibitors from synthetic solution containing the composition similar to the lignocellulosic hydrolysate. The enzyme peroxidase and laccase were used as a biological treatment method. The physico-chemical methods such as adsorption and ion exchange were applied by using activated charcoal and ion exchange resins. The enzyme peroxidase showed a excellent removal of phenolic compounds. The 5-HMF and furfural were completely removed by activated charcoal. The anion exchange resin showed a good result for detoxification of acetic acid. The activated charcoal and ion exchange resins lead to a loss of sugars more or less. The choice of detoxification method must be made after considering the composition and inhibitors in hydrolysates.