Evaluation of Biological and Physico-chemical Detoxification Methods for the Removal of Inhibitors in Lignocellulose Hydrolysate

목질계 바이오매스 가수분해물 중 발효저해 물질에 대한 생물학적 및 물리화학적 무독화 방법의 평가

  • Cho, Dae-Haeng (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Yong-Hwan (Department of Chemical Engineering, Kwangwoon University)
  • Published : 2009.10.29

Abstract

In this study, the detoxification methods were evaluated for the removal of fermentation inhibitors from synthetic solution containing the composition similar to the lignocellulosic hydrolysate. The enzyme peroxidase and laccase were used as a biological treatment method. The physico-chemical methods such as adsorption and ion exchange were applied by using activated charcoal and ion exchange resins. The enzyme peroxidase showed a excellent removal of phenolic compounds. The 5-HMF and furfural were completely removed by activated charcoal. The anion exchange resin showed a good result for detoxification of acetic acid. The activated charcoal and ion exchange resins lead to a loss of sugars more or less. The choice of detoxification method must be made after considering the composition and inhibitors in hydrolysates.

본 연구에서는 리그노셀룰로스 가수분해물과 유사한 조성을 갖는 합성 용액을 이용하여 무독화 실험을 진행하였다. 생물학적 무독화 방법으로는 peroxidase와 laccase와 같은 효소를 이용하였고, 이온교환과 흡착과 같은 물리화학적 방법으로는 이온교환수지와 활성탄을 이용하였다. 효소 중 peroxidase는 페놀계 화합물의 제거에 탁월한 효율을 보였으며, 5-HMF와 furfural은 활성탄에 의해 거의 모두 제거되었고, 아세트산은 음이온교환수지를 사용하는 것이 가장 효율적이었다. 활성탄과 이온교환수지는 다소간의 당손실을 일으켰다. 무독화 방법은 당화액에 포함되어 있는 저해물질의 조성을 고려하여 결정되어야 한다.

Keywords

References

  1. Berlin, A., V. Maximenko, N. Gilkes, and J. Saddler (2007) Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol. Bioeng. 97: 287-296 https://doi.org/10.1002/bit.21238
  2. Torget, R. W., J. S. Kim, and Y. Y. Lee (2000) Fundamental aspects of dilute acid hydrolysis/ fractionation kinetics of hardwood carbohydrates. 1. cellulose hydrolysis. Ind. Eng. Chem. Res. 39: 2817-2825 https://doi.org/10.1021/ie990915q
  3. Almeida, J. R., T. Modig, A. Petersson, B. Hahn-H$\"{a}$gerdal, G. Liden, and M. F. Gorwa-Grauslund (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349 https://doi.org/10.1002/jctb.1676
  4. Klinke, H. B., A. B. Thomsen, and B. K. Ahring (2004) Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66: 10-26 https://doi.org/10.1007/s00253-004-1642-2
  5. Palmqvist, E. and B. Hahn-Hagerdal (2000) Fermentation of lignocellulosic hydrolysates. I:inhibition and detoxification. Bioresour. Technol. 74: 17-24 https://doi.org/10.1016/S0960-8524(99)00160-1
  6. Banerjiee, N., R. Bhatnagar, and L. Viswanathan (1981) Inhibition of glycolysis by furfural in Saccharomyces cerevisiae. Eur. J. Appl. Microbio. Biotechnol. 11: 226-228 https://doi.org/10.1007/BF00505872
  7. Zaldivar, M. and L. O. Ingram (1999) Effect of organic acids on the frowth and fermentation of ethanologenic Escherichia coli LY01. Biotechnol. Bioeng. 66: 203-210 https://doi.org/10.1002/(SICI)1097-0290(1999)66:4<203::AID-BIT1>3.0.CO;2-#
  8. Heipieper, H. J., F. J. Weber, J. Sikkema, H. Keweloh, and J. A. M. de Bont (1994) Mechanisms of resistance of whole cells to toxic organic solvents. Trends Biotechnol. 12: 409-415 https://doi.org/10.1016/0167-7799(94)90029-9
  9. Ezeji, T., N. Qureshi, and H. P. Blaschek (2007) Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97: 1460-1469 https://doi.org/10.1002/bit.21373
  10. Miyafuji, H., H. Danner, M. Neureiter, C. Thomasser, J. Bvochora, O. Szolar, and R. Braun, (2003) Detoxification of wood hydrolysates with wood charcoal for increasing the fermentability of hydrolysates. Enzyme Microb. Technol. 32: 396-400 https://doi.org/10.1016/S0141-0229(02)00308-3
  11. Nilvebrant, N., A. Reimann, S. Larsson, and L. Jönsson (2001) Detoxification of lignocellulose hydrolysates with ion-exchange resins. Appl. Biochem. Biotechnol. 91-93: 35-49 https://doi.org/10.1385/ABAB:91-93:1-9:35
  12. J$\"{o}$nsson, L. J., E. Palmqvist, N. O. Nilvebrant, and B. Hahn-H$\"{a}$gerdal (1998) Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 49: 691-697 https://doi.org/10.1007/s002530051233
  13. Cho, D. H., J. L. Yun, Y. Um, B. I. Sang, and Y. H. Kim (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl. Microbiol. Biotechol. 83: 1035-1043 https://doi.org/10.1007/s00253-009-1925-8
  14. Kim, H. S., D. H. Cho, and Y. H. Kim (2008) In the presence of organic solvent stability of CiP (Corprinus cenereus peroxidase). Kor. J. Biotechnol. Bioeng. 23: 340-344
  15. Caza, N., J. K. Bewtra, N. Biswas, and K. E. Taylor (1999) Removal of phenolic compounds from synthetic wastewater using soybean peroxidase. Water Res. 33: 3012-3018 https://doi.org/10.1016/S0043-1354(98)00525-9
  16. Ward, G., Y. Hadar, and C. G. Dosoretz (2003) Lignin peroxidase-catalyzed polymerization and detoxification of toxic halogenated phenols. J. Chem. Technol. Biotechnol. 78: 1239-1245 https://doi.org/10.1002/jctb.933
  17. Carvalheiro, F., L. C. Duarte, S. Lopes, J. C. Paraj, H. Pereira, and F. M. Girio (2005) Evaluation of the detoxification of brewery's spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI941. Process Biochem. 40: 1215-1223 https://doi.org/10.1016/j.procbio.2004.04.015
  18. Larsson, S., A. Reimann, N. O. Nilvebrant, and L. J$\"{o$nsson (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol. 77: 91-103 https://doi.org/10.1385/ABAB:77:1-3:91