• Title/Summary/Keyword: Layout Analysis

Search Result 942, Processing Time 0.026 seconds

A Case Study on Lead Time Improvement Using a Simulation Approach (시뮬레이션 방식을 이용한 리드 타임 개선 사례 연구)

  • Ro, Wonju;Sim, Jaehun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.140-152
    • /
    • 2021
  • During the shift from gasoline vehicles to electric ones, auto parts manufacturing companies have realized the importance of improvement in the manufacturing process that does not require any layout changes nor extra investments, while maintaining their current production rate. Due to these reasons, for the auto part manufacturing company, I-company, this study has developed the simulation model of the PUSH system to conduct a process analysis in terms of production rate, WIP level, and logistics work's utilization rate. In addition, this study compares the PUSH system with other three manufacturing systems -KANBAN, DBR, and CONWIP- to compare the performance of these production systems, while satisfying the company's target production rate. With respect to lead-time, the simulation results show that the improvement of 77.90% for the KANBAN system, 40.39% for the CONWIP system, and 69.81% for the DBR system compared to the PUSH system. In addition, with respect to WIP level, the experimental results demonstrate that the improvement of 77.91% for the KANBAN system, 40.41% for the CONWIP system, and 69.82% for the DBR system compared to the PUSH system. Since the KANBAN system has the largest impacts on the reduction of the lead-time and WIP level compared to other production systems, this study recommends the KANBAN system as the proper manufacturing system of the target company. This study also shows that the proper size of moving units is four and the priority allocation of bottleneck process methods improves the target company's WIP and lead-time. Based on the results of this study, the adoption of the KANBAN system will significantly improve the production process of the target company in terms of lead-time and WIP level.

A Study on the Planning Model of Elementary School Relocation and the Application of Case Studies in Old City Area focused on the Change of the Number of Students and the Location of Schools - Application of D Old City Area Cases in Busan - (학생수 변화와 학교 위치를 중심으로 본 구시가지역 초등학교 재배치 계획 모형 도출과 사례 적용에 관한 연구 - 부산시 D 구시가지역 사례 적용 -)

  • Choi, Ki-Seok
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.20 no.1
    • /
    • pp.29-42
    • /
    • 2021
  • This study aimed to provide practical measures to help the relocation of schools by investigating and analyzing the trend of increasing number of students in the old city, the location of schools in the school district, and the distance to school. To this end, a model for the relocation of schools in the old city was derived by conducting prior research surveys and case area analysis. In order to derive the Planning Model of Elementary School Relocation in the Old city, the study first analyzes the mid- to long-term changes in the target area and the number of students by school, and places schools through a regionally customized school layout grid model presented in the study. In addition, the school relocation plan needs to be implemented by establishing a mid- to long-term school relocation plan in connection with the nearby urban readjustment project, etc.

Analysis of the effect of street green structure on PM2.5 in the walk space - Using microclimate simulation - (가로녹지 유형이 보행공간의 초미세먼지에 미치는 영향 분석 - 미기후 시뮬레이션을 활용하여 -)

  • Kim, Shin-Woo;Lee, Dong-Kun;Bae, Chae-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.4
    • /
    • pp.61-75
    • /
    • 2021
  • Roadside greenery in the city is not only a means of reducing fine dust, but also an indispensable element of the city in various aspects such as improvement of urban thermal environment, noise reduction, ecosystem connectivity, and aesthetics. However, in studies dealing with the effect of reducing fine dust through trees in existing urban spaces, microscopic aspects such as the adsorption effect of plants were dealt with, structural changes such as the width of urban buildings and streets, and the presence or absence of trees, Impact studies that reflect the actual form of In this study, the effect of greenery composition applicable to urban space on PM2.5 was simulated through the microclimate epidemiologic model ENVI-met, and field measurements were performed in parallel to verify the results. In addition, by analyzing the results of fine dust background concentration, wind speed, and leaf area index, the sensitivity to major influencing variables was tested. As a result of the study, it was confirmed that the fine dust reduction effect was the highest in the case with a high planting amount, and the reduction effect was the greatest at a low background concentration. Based on this, the cost of planting street green areas and the effect of reducing PM2.5 were compared. The results of this study can contribute as a basis for considering the effect of pedestrian space on air quality when planning and designing street green spaces.

Developing Textbook of Producing Easy-to-read Materials for Individuals with Developmental Disabilities (발달장애인을 위한 읽기쉬운자료 제작 교재 개발 연구)

  • Kim, Kyungyang;Nam, Boram
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.5
    • /
    • pp.477-487
    • /
    • 2021
  • The purpose of this study is to develop textbooks that can be used in education for developing easy-to-read materials for people with developmental disabilities. The textbook was developed through the steps of analysis of guidelines for making easy-to-read materials, confirmation of the course, development of textbook contents, and verification of validity. The final developed materials were developed as textbooks, including reader classification, vocabulary, symbols, layout, and production practice for the development of easy-to-read materials with a total of 7 sessions. The important characteristics of the textbook developed in this study are: First, it classified readers who read easy-to-read materials for the first time in Korea and introduced them as Plain Language readers and Easy to Read readers. Second, the guideline that can be referenced while developing easy-to-read materials was developed as a checklist, so that it can be checked by itself. Third, thematic activity sheets and workbooks were developed so that they can be used as activity-oriented textbooks.

A Study on the Visualization of Urban Wind Flow by Using Thermochromic Pigment (열변색성 염료를 이용한 도심 공기 유동 시각화에 관한 연구)

  • Kim, Hong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.11
    • /
    • pp.291-299
    • /
    • 2021
  • Recently, due to environmental problems caused by densification and high rise of urban areas, interests in air flow is increasing and appropriate shape and layout design of buildings is required. Therefore, in this study, we intend to propose an experimental method that can observe the air flow around a building using thermochromic pigment. Thermochromic pigments have limitations in observing precise temperature changes due to the characteristic that the color changes only with respect to a specific temperature, but they have the advantages of easy configuration of experimental equipment and short time required for experiments. In this study, the air flow tendencies around a building was examined by performing CFD analysis for a simple model and then compared with the thermochromic experiment results in order to review the usefulness of the proposed experimental method. As a result of the experiment, it was possible to observe the formation of separated flow and vortex region generated by buildings using the charateristics of thermochromic pigment and it was confirmed that the proposed method can be useful for buildings design and urban city planning.

Analysis of International Standardization Trends of Smart Mining Technology: Focusing on GMG Guidelines (스마트 마이닝 기술 국제 표준화 동향 분석: GMG 가이드라인을 중심으로)

  • Park, Sebeom;Choi, Yosoon
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.173-193
    • /
    • 2022
  • In this study, international standardization trend of smart mining technology was analyzed focusing on the guidelines developed by GMG (Global Mining Guidelines Group). GMG is a non-profit organization that unites the global mining community. It was established to promote mining safety, innovation and sustainability. Currently, GMG's working group consists of artificial intelligence, asset management, autonomous mining, cybersecurity, data access and usage/interoperability, the electric mine, mineral processing, underground mining, and sustainability. Guideline development projects related to smart mining technology are being conducted in artificial intelligence, autonomous mining, cybersecurity, data access and usage/interoperability, and underground mining. As of April 2022, eight types of smart mining-related guidelines have been published through pre-launch, launch, guideline definition, contents generation, technical editing/layout/final review, and voting process. It is judged that the GMG guidelines can be an important reference for the development of domestic smart mining technology standards.

Code development on steady-state thermal-hydraulic for small modular natural circulation lead-based fast reactor

  • Zhao, Pengcheng;Liu, Zijing;Yu, Tao;Xie, Jinsen;Chen, Zhenping;Shen, Chong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2789-2802
    • /
    • 2020
  • Small Modular Reactors (SMRs) are attracting wide attention due to their outstanding performance, extensive studies have been carried out for lead-based fast reactors (LFRs) that cooled with Lead or Lead-bismuth (LBE), and small modular natural circulation LFR is one of the promising candidates for SMRs and LFRs development. One of the challenges for the design small modular natural circulation LFR is to master the natural circulation thermal-hydraulic performance in the reactor primary circuit, while the natural circulation characteristics is a coupled thermal-hydraulic problem of the core thermal power, the primary loop layout and the operating state of secondary cooling system etc. Thus, accurate predicting the natural circulation LFRs thermal-hydraulic features are highly required for conducting reactor operating condition evaluate and Thermal hydraulic design optimization. In this study, a thermal-hydraulic analysis code is developed for small modular natural circulation LFRs, which is based on several mathematical models for natural circulation originally. A small modular natural circulation LBE cooled fast reactor named URANUS developed by Korea is chosen to assess the code's capability. Comparisons are performed to demonstrate the accuracy of the code by the calculation results of MARS, and the key thermal-hydraulic parameters agree fairly well with the MARS ones. As a typical application case, steady-state analyses were conducted to have an assessment of thermal-hydraulic behavior under nominal condition, and several parameters affecting natural circulation were evaluated. What's more, two characteristics parameters that used to analyze natural circulation LFRs natural circulation capacity were established. The analyses show that the core thermal power, thermal center difference and flow resistance is the main factors affecting the reactor natural circulation. Improving the core thermal power, increasing the thermal center difference and decreasing the flow resistance can significantly increase the reactor mass flow rate. Characteristics parameters can be used to quickly evaluate the natural circulation capacity of natural circulation LFR under normal operating conditions.

Transmission Efficiency of Dual-clutch Transmission in Agricultural Tractors (농업용 트랙터 듀얼 클러치 변속기의 동력전달 효율 분석에 관한 연구)

  • Moon, Seok Pyo;Moon, Sang Gon;Kim, Jae Seung;Sohn, Jong Hyeon;Kim, Yong Joo;Kim, Su Chul
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.43-50
    • /
    • 2022
  • The aim of this study was to conduct basic research on the development of a dual-clutch transmission(DCT) and automatic transmission for agricultural tractors. The DCT layout and the DCT simulation model were developed using commercial software. Power transmission efficiency of the DCT and component power loss were analyzed to verify the developed simulation model. Power loss analysis of the components was conducted according to previous studies and ISO(International Organization for Standardization) standards. The power transmission efficiency of the DCT simulation model was 68.4-91.5% according to the gear range. The power loss in the gear, bearing, and clutch DCT system components was 0.75-1.49 kW, 0.77-2.99 kW, and 5.24-10.52 kW, respectively. The developed simulation model not include the rear axle, differential gear, final reduction gear. Therefore actual power transmission efficiency of DCT will be decreased. In a future study, an actual DCT can be developed through the simulation model in this study, and optimization design of DCT can be possible by comparing simulation results and actual vehicle test.

Experiments and theory for progressive collapse resistance of ECC-concrete composite beam-column substructures

  • Weihong Qin;Wang Song;Peng Feng;Zhuo Xi;Tongqing Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.65-80
    • /
    • 2023
  • To explore the effect of Engineered Cementitious Composite (ECC) on improving the progressive collapse resistance of reinforced concrete frames under a middle column removal scenario, six beam-column substructures were tested by quasistatic vertical loading. Among the six specimens, four were ECC-concrete composite specimens consisting of different depth of ECC at the bottom or top of the beam and concrete in the rest of the beam, while the other two are ordinary reinforced concrete specimens with different concrete strength grades for comparison. The experimental results demonstrated that ECC-concrete composite specimens can improve the bearing capacity of a beam-column substructure at the stages of compressive arch action (CAA) and catenary action in comparison with ordinary concrete specimen. Under the same depth of ECC, the progressive collapse resistance of a specimen with ECC at the beam bottom was superior to that at the beam top. With the increase of the proportion of ECC arranged at the beam bottom, the bearing capacity of a composite substructure was increased, but the increase rate slows down with the proportion. Meanwhile, the nonlinear numerical analysis software MSC Marc was used to simulate the whole loading process of the six specimens. Theoretical formulas to calculate the capacities of ECC-concrete composite specimens at the stages of flexural action, CAA and catenary action are proposed. Based on the research results, this study suggests that ECC should be laid out at the beam bottom and the layout depth should be within 25% of the total beam depth.

Analysis of issues in gate recess etching in the InAlAs/InGaAs HEMT manufacturing process

  • Byoung-Gue Min;Jong-Min Lee;Hyung Sup Yoon;Woo-Jin Chang;Jong-Yul Park;Dong Min Kang;Sung-Jae Chang;Hyun-Wook Jung
    • ETRI Journal
    • /
    • v.45 no.1
    • /
    • pp.171-179
    • /
    • 2023
  • We have developed an InAlAs/InGaAs metamorphic high electron mobility transistor device fabrication process where the gate length can be tuned within the range of 0.13㎛-0.16㎛ to suit the intended application. The core processes are a two-step electron-beam lithography process using a three-layer resist and gate recess etching process using citric acid. An electron-beam lithography process was developed to fabricate a T-shaped gate electrode with a fine gate foot and a relatively large gate head. This was realized through the use of three-layered resist and two-step electron beam exposure and development. Citric acid-based gate recess etching is a wet etching, so it is very important to secure etching uniformity and process reproducibility. The device layout was designed by considering the electrochemical reaction involved in recess etching, and a reproducible gate recess etching process was developed by finding optimized etching conditions. Using the developed gate electrode process technology, we were able to successfully manufacture various monolithic microwave integrated circuits, including low noise amplifiers that can be used in the 28 GHz to 94 GHz frequency range.