DOI QR코드

DOI QR Code

Analysis of issues in gate recess etching in the InAlAs/InGaAs HEMT manufacturing process

  • Byoung-Gue Min (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Jong-Min Lee (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Hyung Sup Yoon (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Woo-Jin Chang (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Jong-Yul Park (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Dong Min Kang (ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute) ;
  • Sung-Jae Chang (DMC Convergence Research Department, Electronics and Telecommunications Research Institute) ;
  • Hyun-Wook Jung (DMC Convergence Research Department, Electronics and Telecommunications Research Institute)
  • Received : 2021.10.12
  • Accepted : 2022.09.21
  • Published : 2023.02.20

Abstract

We have developed an InAlAs/InGaAs metamorphic high electron mobility transistor device fabrication process where the gate length can be tuned within the range of 0.13㎛-0.16㎛ to suit the intended application. The core processes are a two-step electron-beam lithography process using a three-layer resist and gate recess etching process using citric acid. An electron-beam lithography process was developed to fabricate a T-shaped gate electrode with a fine gate foot and a relatively large gate head. This was realized through the use of three-layered resist and two-step electron beam exposure and development. Citric acid-based gate recess etching is a wet etching, so it is very important to secure etching uniformity and process reproducibility. The device layout was designed by considering the electrochemical reaction involved in recess etching, and a reproducible gate recess etching process was developed by finding optimized etching conditions. Using the developed gate electrode process technology, we were able to successfully manufacture various monolithic microwave integrated circuits, including low noise amplifiers that can be used in the 28 GHz to 94 GHz frequency range.

Keywords

Acknowledgement

This work was supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government's Ministry of Science and ICT (MSIT).

References

  1. J. Kim and Y. Kwon, High performance millimeter-wave image reject low noise amplifier using inter-stage tunable resonators, ETRI J. 36 (2014), no. 3, 510-513. https://doi.org/10.4218/etrij.14.0213.0325
  2. D. Kang, J. Y. Hong, J. Y. Shim, J. H. Lee, H. S. Yoon, and K. H. Lee, A 77 GHz mHEMT MMIC chip set for automotive radar systems, ETRI J. 27 (2005), no. 2, 133-139. https://doi.org/10.4218/etrij.05.0104.0141
  3. J. Lee, W. J. Chang, D. M. Kang, B. G. Min, H. S. Yoon, S. J. Chang, H. W. Jung, W. Kim, J. Jung, J. Kim, and M. Seo, Wband MMIC chipset in 0.1-μm mHEMT technology, ETRI J. 42 (2020), no. 4, 549-561. https://doi.org/10.4218/etrij.2020-0120
  4. J. Shim, H. S. Yoon, D. M. Kang, J. Y. Hong, and K. H. Lee, DC and RF characteristics of 0.15 μm power metamorphic HEMTs, ETRI J. 27 (2005), no. 6, 685-690. https://doi.org/10.4218/etrij.05.0105.0062
  5. D. Xu, T. Enoki, and Y. Ishii, The importance of electrochemistry-related etching in the gate-groove fabrication for InAlAs/InGaAs HFET's, IEEE Electrn. Device Lett. 19 (1998), no. 1, 10-12. https://doi.org/10.1109/55.650336
  6. L. F. Lester, Smith PM, Ho P, Chao PC, Tiberio RC, Duh KH, 0.15-μm gate-length double recess pseudomorphic HEMT with fmax of 350 GHz, (Digest Int. Electron Devices Meeting), 1988, pp. 172-175.
  7. D. Xu, H. Heiss, S. Kraus, M. Sexl, G. Bohm, G. Trankle, G. Weimann, and G. Abstreiter, 0.15 [micro sign]m double modulation doped InAs-inserted-channel MODFETs: Gate recess for optimum RF performances, Electron. Lett. 33 (1997), 532-533. https://doi.org/10.1049/el:19970296
  8. M. Hagio, Electrode reaction of GaAs metal semiconductor field effect transistors in deionized water, J. Electrochem Soc. 140 (1993), 2402-2405. https://doi.org/10.1149/1.2220832
  9. G. M. Metze, S. McPhilmy, and P. Laux, The effects of electrochemically-induced etching nonuniformities on microwave field effect transistors, IEEE Electron. Device Lett. 16 (1995), 23-25. https://doi.org/10.1109/55.363211
  10. Nitta Y, Ohshima T, Shigemasa R, Nishi S, Kimura T. Control of electro-chemical etching for uniform 0.1-μm gate formation of HEMT, (Digest Int. Electron Devices Meeting), 1996, pp. 47-50.
  11. T. Saranovac, D. C. Ruiz, D. Han, A. M. Arabhavi, O. Ostinelli, and C. R. Bolognesi, Effects of electrochemical etching on InP HEMT fabrication, IEEE Trans. Semi Manufac. 32 (2019), no. 4, 496-501. https://doi.org/10.1109/TSM.2019.2940320
  12. B. Min, S. J. Chang, H. W. Jung, H. S. Yoon, J. M. Lee, W. J. Jang, and D. M. Kang, A study on the behavior of gate recess etch by photoresist openings on Ohmic electrode in InAlAs/InGaAs mHEMT devices, J. Korean Phys. Soc. 77 (2020), no. 2, 122-126. https://doi.org/10.3938/jkps.77.122
  13. H. Yoon, B. G. Min, J. M. Lee, D. M. Kang, H. K. Ahn, H. Kim, and J. Lim, Microwave low-noise performance of 0.17 μm gatelength AlGaN/GaN HEMTs on SiC with wide head double-deck T-shaped gate, IEEE Electron. Device Lett. 37 (2016), no. 11, 1407-1410.  https://doi.org/10.1109/LED.2016.2612624