Acknowledgement
This work was supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government's Ministry of Science and ICT (MSIT).
References
- J. Kim and Y. Kwon, High performance millimeter-wave image reject low noise amplifier using inter-stage tunable resonators, ETRI J. 36 (2014), no. 3, 510-513. https://doi.org/10.4218/etrij.14.0213.0325
- D. Kang, J. Y. Hong, J. Y. Shim, J. H. Lee, H. S. Yoon, and K. H. Lee, A 77 GHz mHEMT MMIC chip set for automotive radar systems, ETRI J. 27 (2005), no. 2, 133-139. https://doi.org/10.4218/etrij.05.0104.0141
- J. Lee, W. J. Chang, D. M. Kang, B. G. Min, H. S. Yoon, S. J. Chang, H. W. Jung, W. Kim, J. Jung, J. Kim, and M. Seo, Wband MMIC chipset in 0.1-μm mHEMT technology, ETRI J. 42 (2020), no. 4, 549-561. https://doi.org/10.4218/etrij.2020-0120
- J. Shim, H. S. Yoon, D. M. Kang, J. Y. Hong, and K. H. Lee, DC and RF characteristics of 0.15 μm power metamorphic HEMTs, ETRI J. 27 (2005), no. 6, 685-690. https://doi.org/10.4218/etrij.05.0105.0062
- D. Xu, T. Enoki, and Y. Ishii, The importance of electrochemistry-related etching in the gate-groove fabrication for InAlAs/InGaAs HFET's, IEEE Electrn. Device Lett. 19 (1998), no. 1, 10-12. https://doi.org/10.1109/55.650336
- L. F. Lester, Smith PM, Ho P, Chao PC, Tiberio RC, Duh KH, 0.15-μm gate-length double recess pseudomorphic HEMT with fmax of 350 GHz, (Digest Int. Electron Devices Meeting), 1988, pp. 172-175.
- D. Xu, H. Heiss, S. Kraus, M. Sexl, G. Bohm, G. Trankle, G. Weimann, and G. Abstreiter, 0.15 [micro sign]m double modulation doped InAs-inserted-channel MODFETs: Gate recess for optimum RF performances, Electron. Lett. 33 (1997), 532-533. https://doi.org/10.1049/el:19970296
- M. Hagio, Electrode reaction of GaAs metal semiconductor field effect transistors in deionized water, J. Electrochem Soc. 140 (1993), 2402-2405. https://doi.org/10.1149/1.2220832
- G. M. Metze, S. McPhilmy, and P. Laux, The effects of electrochemically-induced etching nonuniformities on microwave field effect transistors, IEEE Electron. Device Lett. 16 (1995), 23-25. https://doi.org/10.1109/55.363211
- Nitta Y, Ohshima T, Shigemasa R, Nishi S, Kimura T. Control of electro-chemical etching for uniform 0.1-μm gate formation of HEMT, (Digest Int. Electron Devices Meeting), 1996, pp. 47-50.
- T. Saranovac, D. C. Ruiz, D. Han, A. M. Arabhavi, O. Ostinelli, and C. R. Bolognesi, Effects of electrochemical etching on InP HEMT fabrication, IEEE Trans. Semi Manufac. 32 (2019), no. 4, 496-501. https://doi.org/10.1109/TSM.2019.2940320
- B. Min, S. J. Chang, H. W. Jung, H. S. Yoon, J. M. Lee, W. J. Jang, and D. M. Kang, A study on the behavior of gate recess etch by photoresist openings on Ohmic electrode in InAlAs/InGaAs mHEMT devices, J. Korean Phys. Soc. 77 (2020), no. 2, 122-126. https://doi.org/10.3938/jkps.77.122
- H. Yoon, B. G. Min, J. M. Lee, D. M. Kang, H. K. Ahn, H. Kim, and J. Lim, Microwave low-noise performance of 0.17 μm gatelength AlGaN/GaN HEMTs on SiC with wide head double-deck T-shaped gate, IEEE Electron. Device Lett. 37 (2016), no. 11, 1407-1410. https://doi.org/10.1109/LED.2016.2612624