• Title/Summary/Keyword: Layered Model

Search Result 739, Processing Time 0.026 seconds

Comparison of Contaminant Transport between the Centrifuge Model and the Advection Dispersion Equation Model

  • Young, Horace-Moo;Kim, Tae-Hyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.8-12
    • /
    • 2003
  • The centrifuge test result on capped sediment was compared to the advection- dispersion equation proposed for one layered to predict contaminant transport parameters. The fitted contaminant transport parameters for the centrifuge test results were one to three orders of magnitude greater than the estimated parameters from the advection-dispersion equation. This indicates that the centrifuge model over estimated the contaminant transport phenomena. Thus, the centrifuge provides a non-conservative approach to modeling contaminant transport. It should be also noted that the advection-dispersion equation used in this study is a one layered model. Two layered modeling approaches are more appropriate for modeling this data since there are two layers with different partitioning coefficients. Further research is required to model the centrifuge test using two-layered advection-dispersion models.

A Study on the Conversion Condition of Shallow Water 3-layered Model into 2-layered Model with Correlation (상관관계를 이용한 천해 3층모델의 2층 모델로의 전환조건에 대한 연구)

  • Kim, Young-Sun;Kim, Sung-Boo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.92-101
    • /
    • 2008
  • To dissolve the multi-layered model problems, and to complement 2-layered model's simplicity, assumed fluid-fluid-solid 3-layered model. Generally it is known that if the sediment thickness is more than 10 wavelength, the half space's influence to the in-water acoustic field could be disregarded. By tracking the maximum correlation coefficient of calculated results and experimental ones we confirmed that the requirement could be more realized. To calculate the maximum correlation coefficient we used single sensor transmission loss. On the assumption that the sediment sound velocity was 1813 m/s and frequency range 50 kHz to 120 kHz, the conversion condition was from 2.5 to 7.7 wavelength.

Analysis of the Stress Characteristics of Double Layered Tube at Elevated Temperature (고온에서 이중튜브의 열응력특성해석)

  • Kim, E.H.;Jang, J.H.;Park, S.P.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.405-410
    • /
    • 2010
  • Double layered tube that has been used for transportation and oil piping system is occasionally exposed to elevated temperature. The change in stress state at elevated temperature is important for the safe design of double layered tube. In this study, the variation of stress state for hydroformed double layered tube of which inner tube is stainless steel and outer tube is mild steel has been analytically analyzed. To characterize the thermal stress at elevated temperature, analytical model to provide thermal stresses between outer tube and inner tube was developed by using theories of elasticity and Lame equation. The feasibility of analytical model is verified by finite element analysis using ANSYS $CLASSIC^{TM}$, commercially available code. The variation of thermal stress at various thickness combination of inner and outer tube has also been investigated by proposed analytical model.

Layered finite element method in cracking and failure analysis of RC beams and beam-column-slab connections

  • Guan, Hong;Loo, Yew-Chaye
    • Structural Engineering and Mechanics
    • /
    • v.5 no.5
    • /
    • pp.645-662
    • /
    • 1997
  • A nonlinear semi-three-dimensional layered finite element procedure is developed for cracking and failure analysis of reinforced concrete beams and the spandrel beam-column-slab connections of flat plates. The layered element approach takes the elasto-plastic failure behaviour and geometric nonlinearity into consideration. A strain-hardening plasticity concrete model and a smeared steel model are incorporated into the layered element formulation. Further, shear failure, transverse reinforcement, spandrel beams and columns are successfully modelled. The proposed method incorporating the nonlinear constitutive models for concrete and steel is implemented in a finite element program. Test specimens including a series of reinforced concrete beams and beam-column-slab connections of flat plates are analysed. Results confirm the effectiveness and accuracy of the layered procedure in predicting both flexural and shear cracking up to failure.

Multi-communication layered HPL model and its application to GPU clusters

  • Kim, Young Woo;Oh, Myeong-Hoon;Park, Chan Yeol
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.524-537
    • /
    • 2021
  • High-performance Linpack (HPL) is among the most popular benchmarks for evaluating the capabilities of computing systems and has been used as a standard to compare the performance of computing systems since the early 1980s. In the initial system-design stage, it is critical to estimate the capabilities of a system quickly and accurately. However, the original HPL mathematical model based on a single core and single communication layer yields varying accuracy for modern processors and accelerators comprising large numbers of cores. To reduce the performance-estimation gap between the HPL model and an actual system, we propose a mathematical model for multi-communication layered HPL. The effectiveness of the proposed model is evaluated by applying it to a GPU cluster and well-known systems. The results reveal performance differences of 1.1% on a single GPU. The GPU cluster and well-known large system show 5.5% and 4.1% differences on average, respectively. Compared to the original HPL model, the proposed multi-communication layered HPL model provides performance estimates within a few seconds and a smaller error range from the processor/accelerator level to the large system level.

Experimental and Theoretical Study on Shear Flow Behavior of Polypropylene/Layered Silicate Nanocomposites

  • Lee, Seung-Hwan;Youn, Jae-Ryoun
    • Advanced Composite Materials
    • /
    • v.17 no.3
    • /
    • pp.191-214
    • /
    • 2008
  • Polypropylene/layered silicate nanocomposites containing maleic anhydride grafted polypropylene were prepared by melt compounding and their rheological behavior was investigated in shear flow. Transient and steady shear flows were simulated numerically by using the K-BKZ integral constitutive equation along with experimentally determined damping functions under dynamic oscillatory and step strain shear flows. Nonlinear shear responses were predicted with the K-BKZ constitutive equation using two different damping functions such as the Wagner and PSM models. It was observed that PP-g-MAH compatibilized PP/layered silicate nanocomposites have stronger and earlier shear thinning and higher steady shear viscosity than pure PP resin or uncompatibilized nanocomposites at low shear rate regions. Strong damping behavior of the PP/layered silicate nanocomposite was predicted under large step shear strain and considered as a result of the strain-induced orientation of the organoclay in the shear flow. Steady shear viscosity of the pure PP and uncompatibilized nanocomposite predicted by the K-BKZ model was in good agreement with the experimental results at all shear rate regions. However, the model was inadequate to predict the steady shear viscosity of PP-g-MAH compatibilized nanocomposites quantitatively because the K-BKZ model overestimates strain-softening damping behavior for PP/layered silicate nanocomposites.

An upper bound analysis for the plugging type of ballistic perforation on the double and multi-layered armour plates (복층 및 다층장갑판재의 관통에 대한 상부경계이론 해석)

  • 이종우
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.35-41
    • /
    • 2000
  • A modified theoretical analysis of the ballistic perforation on the double and multi-layered armour plates using an upper bound method has been presented in this paper. A modified model based on the suggestion of the Awerbuch-bodner model has been adapted and extended into double and multi-layered armour plates when the plugging type of penetration has been occurred. The residual projectile speed, ballistic limit velocity and contact time during the penetration process have been derived from the equation of motion at each stage.

  • PDF

Simulations of Frequency-dependent Impedance of Ground Rods Considering Multi-layered Soil Structures

  • Lee, Bok-Hee;Joe, Jeong-Hyeon;Choi, Jong-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.531-537
    • /
    • 2009
  • Lightning has a broad frequency spectrum from DC to a few MHz. Consequently, the high frequency performance of grounding systems for protection against lightning should be evaluated, with the distributed parameter circuit model in a uniform soil being used to simulate grounding impedances. This paper proposes a simulation method which applies the distributed parameter circuit model for the frequency-dependent impedance of vertically driven ground rods by considering multi-layered soil structures where ground rods are buried. The Matlab program was used to calculate the frequency-dependent ground impedances for two ground rods of different lengths. As a result, an increase of the length of ground rod is not always followed by a decrease of grounding impedance, at least at a high frequency. The results obtained using the newly proposed simulation method considering multi-layered soil structures are in good agreement with the measured results.

An Optimal Investment Planning Model for Improving the Reliability of Layered Air Defense System based on a Network Model (다층 대공방어 체계의 신뢰도 향상을 위한 네트워크 모델 기반의 최적 투자 계획 모델)

  • Lee, Jinho;Chung, Suk-Moon
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.3
    • /
    • pp.105-113
    • /
    • 2017
  • This study considers an optimal investment planning for improving survivability from an air threat in the layered air defense system. To establish an optimization model, we first represent the layered air defense system as a network model, and then, present two optimization models minimizing the failure probability of counteracting an air threat subject to budget limitation, in which one deals with whether to invest and the other enables continuous investment on the subset of nodes. Nonlinear objective functions are linearized using log function, and we suggest dynamic programming algorithm and linear programing for solving the proposed models. After designing a layered air defense system based on a virtual scenario, we solve the two optimization problems and analyze the corresponding optimal solutions. This provides necessity and an approach for an effective investment planning of the layered air defense system.

A Study on Shallow Water Propagation Model with 2-layered Sediment (2개의 해저층으로 구성된 천해 음파전달에 관한 모델 연구)

  • 김영선;김성부
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.71-80
    • /
    • 2001
  • In order to consider the sediment layer's effect to total acoustic field, we composed a 3 layered fluid model of 2 sediment layers by adding an additional layer to the Pekeris model and found solutions by using Green's function, boundary conditions and Sommerfeld radiation condition. The modes were divided into discrete modes and virtual modes, and confirmed that the characteristic equation to find discrete modes was same as that of Tolstoy and Clay for normal modes. Also, we confirmed that under similar conditions the 3 layered model showed same results as that of Pekeris model. We believe this 3 layered model can be used to study the sediment's effect on the virtual mode of near field.

  • PDF