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1  |   INTRODUCTION

Supercomputing or high-performance computing (HPC) is 
a computing systems area that requires strong computation 
capabilities to solve scientific and/or engineering problems. 
These types of computing systems typically consist of hun-
dreds or thousands of computing and storage nodes connected 
via complex network equipment to create a cluster system. In 
the initial system design stage, estimating the overall system 
performance in various areas is important because it affects 
several system characteristics, including the scale of the sys-
tem, required performance of each node, speed, and topology 

of the interconnection network, storage capacity, and file 
system performance. Therefore, one of the most important 
factors in determining the system configuration of supercom-
puters and HPC systems is performance. To accurately eval-
uate system performance, system designers and engineers 
perform simulations and estimations based on various sets of 
performance benchmarks and mathematical models.

High-performance Linpack (HPL) is the most well-known 
benchmark for evaluating and estimating the capabilities of 
computing systems [1–4]. HPL has been used as the stan-
dard for comparing the performance of computing systems 
since the early 1980s, and the results of the HPL benchmark 
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are used as a common metric for measuring the most pow-
erful computing systems in the world [5]. The HPL bench-
mark is a linear solver program that calculates the solution to 
an N × N dense matrix problem. The benchmark calculates 
and measures the number of floating-point operations per-
formed and the total time required for calculation. Therefore, 
the HPL benchmark outputs metrics in the form of floating-
point operations per second (FLOPS) for computing systems. 
Since the announcement of LINPACK 100, Linpack has con-
tinued to increase in scale and performance as the sizes of 
target computing systems have grown from LINPAK 100 to 
LINPACK 1000 and HPL [3].

Over the past few decades, significant breakthroughs and 
performance enhancements related to processor microarchi-
tectures, memory, and network systems have been achieved 
based on the development of multicore processors, acceler-
ators, high-bandwidth memory, 100 Gbps networks, and so 
on. Based on these developments, many researchers have 
attempted to enhance the HPL benchmark to evaluate state-
of-the-art architectures and gain additional FLOPS. HPL al-
gorithms focus on developing and enhancing the basic linear 
algebra subprogram libraries for Linpack [6], research on 
efficient block size determination [7], communication over-
head obfuscation during lower-upper (LU) factorization [8], 
and fault tolerance [9]. In [10–13], efficient modifications 
and adaptations of HPL to general-purpose computing on 
graphics processing units (GPGPU) were investigated. The 
roofline model and analysis of the processor performance 
model [14,15] for various components of HPL have been 
proposed, and evaluations of commodity systems [16] have 
been presented.

The skeleton key algorithm and mathematical model of 
HPL are still maintained and useful, even though the details 
of their implementations have changed. Basic computation 
time is proportional to the problem size N in O(N3) and com-
munication overhead in O(N2) [2]. The numerical model of 
original HPL for performance estimation is based and as-
sumed the use of single processor per node and single layer 
of system network. Based on the simplicity of this model, 
system designers and engineers can easily estimate the per-
formance of a system at a first glance.

However, this simplicity can lead to system designers and 
engineers over- or underestimating system performance as 
technology advances. Recently, it has become common to 
use multicore processors and/or accelerators, such as GPGPU 
with multiple layers of communication networks in super-
computers and HPC [17–20]. These communication layers 
include PCI Express (PCIe) and NVLink within nodes and 
system interconnection networks.

With the use of accelerators and added communication 
layers, the error between the measured and numerically es-
timated HPL performance becomes larger. The numerical 
model of the original HPL with a simple processor and single 

communication layer is not sufficient to estimate real-world 
system performance.

In this paper, to reflect recent developments in proces-
sor/accelerator architectures and the multi-layered nature 
of system interconnection networks, a numerical model for 
multi-communication layered (MCL) HPL is proposed and 
evaluated. By adopting multiple communication layers and 
considering the characteristics of interconnection networks, 
it is possible to derive more precise and robust results when 
estimating system performance.

The MCL HPL model contributes to a more accurate esti-
mation of a system's performance, as follows:

•	 Multiple communication layered modeling method is pro-
posed: The proposed MCL HPL model can reflect commu-
nication overhead more precisely for each layer; thus, it can 
produce less error in estimating the system performance 
compared to the original HPL model.

•	 The MCL HPL model can be expanded to any number of 
communication layers: The proposed methodology can 
model single or multiple layers and provides flexibility in 
modeling with enhanced precision.

•	 An accelerator model is proposed: For the first layer, an 
abstracted accelerator model is proposed for more precise 
estimation in multiple communication layers.

•	 A numerical model that requires multiple communication 
layers can be modeled by the method used in the MCL 
HPL model: The proposed modeling method provides 
clues to decide the problem sizes and boundaries of each 
communication layer for a given numerical model.

The remainder of this paper is organized as follows. 
Section  2 briefly discusses the background of the HPL 
model. The modeling of MCL HPL is described in Section 3. 
Sections 4 and 5 present some preliminary results and analy-
sis for the proposed MCL HPL model and detailed application 
results for an experimental GPU cluster system, respectively. 
Finally, the conclusions and some additional considerations 
regarding the proposed MCL HPL model are discussed in 
Section 6.

2  |   BACKGROUND OF HPL

The HPL benchmark counts the number of floating-point 
operations and measures the execution time to calculate the 
FLOPS of a target system. The number of operations to solve 
Ax = b for an N × N dense matrix using Gaussian elimination 
is known to be (2N3/3 + 3N2/2). If a system requires t seconds 
to solve a given problem, then the ideal performance of the 
system is (2N3/3 + 3N2/2)/t FLOPS [2,3,7]. In a real comput-
ing system, the HPL benchmark is executed in parallel with 
a message-passing method. An entire matrix is divided into 
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small submatrices, which are distributed to every node in a 
large system and executed in parallel. During parallel execu-
tion, there are many factors affecting ideal performance, such 
as memory read and write speeds for calculation, copying 
data to the network device, and data movement among nodes 
via the network. Therefore, the HPL benchmark algorithm 
is based on a parallel execution environment, and parallel 
calculations reflect the system performance considering net-
work data movement and characteristics (initial latency and 
bandwidth).

In the HPL benchmark, a randomly generated problem 
matrix A (size of N × N) is processed in units called panels 
and solved using the LU factorization method. The size of 
the panels is defined as NB (block size), and the entire prob-
lem is divided into N/NB panels in each matrix dimension. 
To distribute and execute these panels in parallel on a P × Q 
processor (or node) grid, the problem matrix A is also divided 
by P and Q (2D block cyclic fashion) to distribute blocks on 
the processor grid evenly [7]. LU factorization performs two 
major operations: panel factorization and updating, which 
are performed on the problem matrix in the diagonal direc-
tion to derive a solution. LU factorization is a key part of 
the HPL algorithm. The HPL algorithm is designed to solve 
Ax = b, where the problem matrices A and b are given. The 
equation Ax = b is transformed into LUx = Pb to solve vector 
x using LU factorization. The equation LUx = Pb is consid-
ered as Ly = Pb and Ux = y, where P is a row-permutation 
matrix. The HPL algorithm first finds pivot P for each NB-
size panel (pivoting and factorization), broadcasts and ex-
changes information in the column and row directions, and 
finally performs permutation to calculate Ux = y (backward 
substitution). The task is distributed on P × Q processors and 
performed in parallel. The operations and performance are 
thoroughly analyzed and described in [1–3,7,17].

According to [3,7], the numerical model (equation) of the 
time required for panel factorization tpFact and updating tUpdate 
for the ith panel are expressed by the following equations:

where γ is the floating-point operation rate of the matrix-matrix 
operation, α is the initial latency of the network, and β is the 
network speed [3,7]. After factorizing and updating the given 

problem matrix and considering only the main terms in α, β, 
and γ, the final numerical HPL model for execution time THPL 
is simply expressed as

where TCALC is the time required for HPL calculation, and 
TCOMM is the total communication time [3].

According to the THPL equation above, the perfor-
mance of a system is inversely proportional to the number 
of problems in O(N3) from an execution perspective, and 
the numbers of problems in O(N2) and O(N) from a data 
movement perspective. Because data movement through a 
system network incurs a much higher cost than the calcula-
tions themselves, the final performance of a system relies 
heavily on the performance (latency and bandwidth) of the 
corresponding network. Additionally, if a system utilizes 
multiple layers of communication (multiple hierarchies of 
networks in a system) and the differences in bandwidth be-
tween communication layers are large, then the final per-
formance estimation for that system differs from the result 
provided by (3).

It is not unusual to utilize multiple communication layers 
in state-of-the-art HPC systems. To fill the gaps in perfor-
mance estimation between the early mathematical model of 
HPL and recent computing systems, it is necessary to develop 
and consider the MCL nature of such computing systems.

3  |   MCL HPL MODEL

In this section, a mathematical model and algorithm for MCL 
HPL are described.

3.1  |  Modeling of multi-communication 
layers for HPL

In this section, a numerical model for MCL HPL is pre-
sented and discussed. In modern computing system archi-
tectures, there are many communication layers for memory 
access, communication between processors through the 
processor bus, between the processor and accelerator via 
PCIe, among accelerators using proprietary intranetworks, 
and for system level interconnects such as Infiniband (IB) 
or Ethernet. These buses, intranetworks, and interconnect 
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networks can be considered communication networks with 
different characteristics at different levels. A precise and 
accurate model must be able to identify and differentiate the 
characteristics of the communication layers at each level.

3.1.1  |  The first layer: memory

Over the past decade, significant breakthroughs in memory 
technology have been achieved, resulting in high-bandwidth 
memory (HBM). HBM consists of 3D (or 2.5D) stacked 
DRAM technology that provides terabit-per-second band-
widths and large bit widths per package [17,18,20]. HBM 
can be integrated with conventional processors and/or ac-
celerators, though it requires some interconnection silicon 
components, such as interposers. The use of HBM is growing 
rapidly, particularly in accelerators such as GPUs. To reflect 
the recent trends in HPC systems, the proposed model fo-
cuses on the use of accelerators (particularly GPUs) and the 
communication characteristics of HBM in accelerators.

The first communication layer model considers memory as 
a communication device that moves data from one location to 
another location, similar to a typical network. Communication 
in the first-layer comprises memory reads and writes between 
the accelerator cores and memory. Therefore, the boundary 
of the first communication layer is limited and assumed to be 
within an accelerator containing local memory.

Based on these assumptions, the memory access latency 
and access speed of HBM become the latency of the first layer 
αL1 and speed of the network βL1, respectively. However, ap-
plying these parameters directly to an HPL model does not 
yield an accurate performance estimate because the GPGPU 
uses multiple HBM packages, and thousands of internal cores 
access each HBM package simultaneously. In the proposed 
model, GPGPU is considered to consist of one large, fast core 

that provides the same theoretical performance as many cores 
and one equivalent memory controller, as in Figure 1.

The theoretical memory bandwidth per core in actual 
GPGPU can be modeled as dividing total memory bandwidth 
(total memory bits multiplied by operation speed) by the 
number of cores:

where BWperCore is the memory bandwidth per core, M is the 
number of memory controllers, W is the number of quad-
words (QWs, 64 bits) per memory controller, H is the mem-
ory operation frequency, and C is the total number of actual 
cores. However, each core in the real hardware shares mul-
tiple memory controllers; it is not sufficient to apply (6) di-
rectly as the bandwidths of model processor. The bandwidth 
of the equivalent memory controller (BWEq) is modeled by 
multiplying (6) by (M × W), because one large model core can 
access (M  ×  W) QWs simultaneously using one equivalent 
memory controller:

where BWEq is the equivalent bandwidth for the model core.
αL1 is the access latency, and βL1 is the speed of the 

first layer (memory access), and their final values are ex-
pressed using the equivalent bandwidth, as in (8) and (9), 
respectively.

Generally, the theoretical maximum performance (Rpeak) of 
the real GPGPU and the proposed model is calculated by (10).

where C is number of cores, F is number of floating operations 
per cycle, and S is the operating frequency [3]. By applying αL1 
and βL1 to (1) and (2) and accumulating accordingly, the com-
plete TCALC,L1 and TCOMM,L1 estimates for the first communica-
tion layer are expressed as (11) and (12), respectively.
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,F I G U R E  1   An equivalent GPGPU model for the 
first communication layer [Colour figure can be viewed at 
wileyonlinelibrary.com]

Actual processor
(GPGPU)

One big and fast core

(C × F) × S FLOPS

MEMCeq

equivalent 

Model processor

MEMC MEMC

MEMC MEMC

Parameters Actual processor Model processor 
Number of cores C cores 1  cores
FLOP/core F FLOP / core C × F FLOP / core
Operating frequency S Hz S Hz
Number of controller M controllers 1  controller
Number of QW/memc. W quad-words (64bits) M × W quad-words (64bits)
Operating frequency H Hz H Hz

www.wileyonlinelibrary.com
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where the subscript L1 indicates that each corresponding pa-
rameter belongs to the first communication layer. THPL,L1 is the 
sum of (11) and (12). If α = αL1, β = βL1, γ = γL1, and N = NL1, 
the sum of (11) and (12) is simplified to (3).

3.1.2  |  The second layer: intranetwork

As supercomputing and HPC systems continue to utilize 
accelerators such as GPUs and improve the performance 
of input/output (I/O) interconnection, data movement 
among accelerators becomes increasingly rapid. PCIe is 
the de facto standard for I/O subsystems, and the speed 
of PCIe has been enhanced from 2.5  Gbps per lane to 
32  Gbps per lane and is still evolving [19,21–23]. By 
providing peer-to-peer data movement among I/O de-
vices, modern PCIe provides much greater speeds com-
pared to when it first appeared. If a node supports 16 
lanes at a speed of 32 Gbps per lane, then the theoretical 
speed among PCIe devices is 512 Gbps and the perfor-
mance exceeds the existing system interconnection (the 
speed of Infiniband HDR for 4x links is 400 Gbps). In 
addition to PCIe, NVIDIA provides a proprietary intra-
interconnection network called NVLink with a speed of 
50 GT/s per lane [23–25].

In the proposed model, these types of intranode intercon-
nection networks are defined as the second communication 
layer. The characteristics of the second communication layer 
can be summarized as follow:

•	 Communication is typically limited to within a node bound-
ary and up to tens of accelerators: The number of acceler-
ators and size of the problem are limited to the boundary 
of node to obtain best communication performance and re-
duce hardware and software communication intervention. 
TCALC and TCOMM are applied starting from the boundary 
of the first layer to the node boundary (the total memory of 
the accelerators in a node).

•	 The communication speed exceeds that of conventional in-
terconnection networks: The network is based on I/O bus 
or intranetwork in a node. The second layer is implemented 
fully in hardware, including control, to minimize software 
intervention, and the physical distance between two de-
vices is very short compared to that in a conventional net-
work. Therefore, α and β of the second layer differ from 
those of a conventional network (more efficient and faster).

•	 Direct peer-to-peer communication is provided between 
accelerators: modern I/O bus and intranetwork provide 
hardware-based peer-to-peer communication to eliminate 
data copies between I/O devices and main memory and 
provide direct data movement between devices. The peer-
to-peer communication contributes to enhance the commu-
nication bandwidth and throughput (so the α and β of the 
second layer are faster than the conventional network).

The access latency between peer devices is defined in the 
second layer as αL2 and the link speed between peer devices 
becomes the speed of network βL2 for the problem size of NL2. 
HPL communication time in the second layer is generally ex-
pressed by (13) and (14),

where NL1 is problem size of the first layer. By applying Equations 
(4) and (5) to (13) and (14), the total execution time THPL for the 
second communication layer (THPL,L2) can be obtained.

3.1.3  |  The third layer and above: 
conventional network

The third and higher communication layers are conventional 
system-wide interconnection network layers. For these types 
of system interconnections in supercomputing and HPC sys-
tems, infiniband is the most practical commercial intercon-
nect, owing to its high speed and support of remote direct 
memory access in hardware. Conventional Ethernet is also 
widely used in systems, for which communication among 
applications and nodes is not critical. For top-tier super-
computing systems, to achieve more FLOPS and enhanced 
system-wide performance, more efficient and high-speed pro-
prietary system interconnects are adopted based on topology 
concerns, such as TOFUD and Aries Dragonfly [26–29].

The HPL communication time of the third and above lay-
ers follows the conventional model and is expressed by (15) 
and (16) in general form.
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where x indicates the corresponding communication layer num-
ber, and the access latency of the layer x as αLx and the speed 
of network βLx. The problem size NLx is the total memory size 
belonging to layer x, and NL(x−1) is the memory size of the lower 
layer. THPL,Lx of arbitrary layer x is the sum of (15) and (16).

3.1.4  |  Determination of layer boundaries and 
generalization

To work with MCL HPL, it is necessary to clearly identify 
and define the boundaries of each communication layer. 
Most supercomputing and/or HPC systems have one, two, or 
three communication layers. The LU factorization calcula-
tion and communication time are divided among each com-
munication layer. The size of the first layer is clear because 
it is bounded by the amount of GPGPU memory. The bound-
ary for the column direction of an N × N problem matrix is 
a function of P and Q for HPL. The size of the final commu-
nication layer is also obvious and is N × N in each direction. 
The intermediate layers depend on the scale of the accelera-
tors and/or nodes in those layers, and their boundaries are 
somewhat ambiguous. In this paper, the following boundary 
decision mechanisms are proposed for the MCL HPL model.

3.1.4.1  |  Boundary for the first layer
The HPL algorithm divides an N × N problem matrix into 
P × Q submatrices to process on P × Q processors (or ac-
celerators) in divide and conquer fashion. If an arbitrary size 
N is not exactly divisible by NB, then some units of the sub-
matrices (that form many NB × NB panels) are padded with 
zeros to achieve the correct matrix dimensions. To simplify 
this process and reduce the complexity of model construc-
tion, a new size Nnew is defined as (17). 

The Nnew × Nnew matrix is divided to form P × Q subma-
trices of size mL1 × nL1, as shown in Figure 2. Nnew is also 
divided by P and Q in each matrix dimension. The sizes mL1 
and nL1 for the units of the submatrices are defined by (18) 
and (19) and applied as NL1 for THPL,L1. 

 

3.1.4.2  |  Boundary for the intermediate layers
The problem size and grid assignment in the second layer and 
above (excluding the final layer) vary according to the system 
configuration. The size is dependent on the capacity and grid 
assignment of each new layer, which represent how many ac-
celerators can be equipped within a node and how they are 
divided into grids in the corresponding layer. The grid assign-
ment for intermediate layers is strongly dependent on the rank 
assignment of the message-passing interface (MPI) and job 
distribution, which are not major considerations of the MCL 
HPL model. Therefore, the proposed MCL model follows the 
basic HPL P and Q guidelines for these intermediate layers 
[30], and mLx and nLx are applied as NLx to calculate THPL,Lx. 

•	 If the total ranks in the intermediate layer Lx are equal to 
pLx and qLx, then the subgrid for layer Lx is made as square 
as possible (pLx ≤ qLx).

•	 If either pLx or qLx is a prime number, then we follow the 
original grid distribution of P and Q.

3.1.4.3  |  Boundary of the final layer
The last layer includes all the problems of HPL, so the prob-
lem size in this layer is equal to N (or Nnew).

3.1.4.4  |  Generalization of MCL HPL
The proposed MCL HPL model calculates the time required 
for factorization and communication according to the range 
of each communication layer. By applying the parameters in 
(8), (9), and (17)–(21) to (1) and (2), THPL can be derived as 
shown in (22) for all communication layers. 
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where j is the communication layer index. TCALC,Lj and TCOMM,Lj 
are expressed in (23) and (24). 

 

where i is a panel number that is included in the corresponding 
communication layer j. Nnew is the total size of problem as in 
(17), and NL(x−1) is the size of memory of lower layer. In (23), 
the calculation time is invariant with respect to communica-
tion parameters αLx and βLx, and γ is the same for all processors 
or accelerators (α = αLx and β = βLx). Therefore, TCALC is as 
follows: 

In (24), TCOMM,Lj consists of three communication compo-
nents, as in (26). These communication components for piv-
oting, broadcasting, and updating are defined in (27), (28), 
and (29), respectively. The communication parameters αLj 
and βLj must be considered in each communication layer j. 
The total time required for each communication component 
is generalized and calculated as demonstrated in (26)–(29). 

 

 

 

where mLj and nLj are the problem matrix dimensions in the jth 
layer (refer to Figure 2(A)). The final THPL value is obtained 
by summing all the calculation and communication times of all 
communication layers by applying (22), (25), and (26).

3.1.4.5  |  Verification of MCL HPL
The proposed MCL HPL model expands communication 
layers from single layer (the original HPL model) to multi-
layers. As calculation time is invariant to the communication 
parameters, the O(N3) term in TCALC of the MCL HPL (25) is 
same for the original equation, (3). For TCOMM, if there exists 
only one communication layer, then (24) can be simplified as 
(30), which leads to the same results (α and β terms) as (3).

(23)

TCALC =

x
∑

j= 1

TCALC,Lj =

NL1

NB
∑

i= 1

TCALC,L1 i +

NL2

NB
∑

i=
NL1

NB
+ 1

TCALC,L2 i

+

NL3

NB
∑

i=
NL2

NB
+ 1

TCALC,L3 i +. . .+

Nnew

NB
∑

i=
NL x− 1

NB
+ 1

TCALC,Lx i ,

(24)

TCOMM =

x
∑

j= 1

TCOMM,Lj =

NL1

NB
∑

i= 1

TCOMM,L1 i +

NL2

NB
∑

i=
NL1

NB
+ 1

TCOMM,L2 i

+

NL3

NB
∑

i=
NL2

NB
+ 1

TCOMM,L3 i +. . .+

Nnew

NB
∑

i=
NL x− 1

NB
+ 1

TCOMM,Lx i ,

(25)

TCALC =

x
∑

j= 1

(

TCALC,Lj

)

=

Nnew

NB
∑

i= 1

(

tpFact_CALC (i)+ tUpdate_CALC (i)
)

= �
2N3

new

3PQ
+�

(

NB (3Q+3P+6))N2
new

6PQ

)

+�

(

NB2 ((3P+2)−(2P+3)Q)N2
Nnew

6PQ

)

.

(26)
TCOMM,Lj = Tpivot_COMM,Lj + Tbroadcast_COMM,Lj + Tupdate_COMM,Lj,

(27)

Tpivot_COMM,Lj = NB (logP)
(

�j + � j (2NB + 4)
)

(

mj − mj−1

NB

)

,

(28)

Tboradcast_COMM,Lj =�j

(

mj−mj−1

NB

)

+� j

(

m2
j
−2mjmj−1−

(

mj−mj−1

)

NB+m2
j−1

2P

)

,

(29)

TUpdate_COMM,Lj =�j (logP+P−1)

(

nj−nj−1

NB

)

+3� j

(

n2
j
−2njnj−1+

(

nj−nj−1

)

NB+n2
j−1

2Q

)

,

F I G U R E  2   Problem matrix boundaries between layers. (A) 
Represents the concept of overall boundaries respect to total problem 
size N, and (B) is the representation example for 2 × 2 (P × Q) block 
cyclic distribution [Colour figure can be viewed at wileyonlinelibrary.
com]

(A)

(B)

www.wileyonlinelibrary.com
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The main difference between the original HPL model and 
the MCL HPL model comes from the communication param-
eter differences. The original HPL model takes the commu-
nication parameter (α and β) values from the last layer, but 
the MCL HPL model takes communication parameters from 
each detailed communication layer. Usually, α and β for the 
last communication layer are larger than that of lower layers 
(αlast_layer ≥ αlower_layer and βlast_layer ≥ βlower_layer), the original 
HPL model over estimates the communication overhead than 
the MCL HPL.

4  |   SIMULATION USING THE MCL 
HPL MODEL

The proposed MCL HPL model was implemented and 
evaluated in this study. For preliminary evaluation, a single-
GPGPU system and some well-known large cluster systems 
were simulated using the proposed MCL HPL model.

4.1  |  Single-GPGPU system

The first-layer model in the proposed MCL HPL model is a 
special model for a processor and/or accelerator and is well 
suited to GPGPU-like accelerators. To evaluate the first-
layer model, a P100 GPGPU system from NVIDIA was mod-
eled, evaluated using MCL HPL model, and measured and 
compared with real performance measurement according to 
various problem size.

Because the first-layer model is based on the equivalent 
bandwidth of HBM in an accelerator, two types of model eval-
uation were performed and the results were compared to the 
measured results. One is the bandwidth parameter calculated as 
a simple numerical sum (“L1 Simulated Simple”), and the other 
is the bandwidth parameter calculated by the proposed method 
(“L1 Simulated MCL,” equivalent bandwidth parameter).

The P100 GPGPU system contains four HBM2 packages 
with a total bandwidth of 732.2 GB/s with 204 MB/s per core 
[31]. The equivalent bandwidth per core based on the MCL 
HPL model is 13 GB/s per core. An initial latency of 1029 
cycles was considered based on [18]. The total bandwidth was 
applied and simulated for the L1 Simulated Simple case, and 
the equivalent bandwidth was applied to the L1 Simulated 
MCL case. The results are presented in Figure 3. One can see 
that the proposed MCL HPL case (L1 Simulated MCL) has 
a much smaller error rate than the L1 Simulated MCL case 
relative to the measured results. For a problem size of 44 000 
(corresponding to 93% of the total HBM memory), the pro-
posed MCL HPL model exhibits a relatively small (−1.07% 
error, 3840 GFLOPS) compared to the L1 Simulated Simple 
case (11.99% error, 4347 GFLOPS) relative to the measured 
performance (3882 GFLOPS).

In Figure 3, there is a relatively large gap between the es-
timated and measured results, particularly for small problem 
sizes (up to 25 000). This gap stems from details of the mi-
croarchitecture that are not considered in the proposed MCL 
HPL model. The data and core allocation for problems, cache 
operation characteristics, memory access patterns, and other 
architectural details may affect this gap.

However, these errors are generally not problematic because 
a system typically utilizes the full memory of each GPGPU and 
the maximum problem size to achieve more FLOPS.

4.2  |  Large cluster system

To validate the scalability of the proposed MCL HPL 
model for large systems, some of the most well-known 
systems [32–39] from the TOP500 site [5] were modeled 
and simulated using the MCL HPL and the original HPL 
model. Table  1 summarizes the reported and estimated 
performance measures using the original HPL model [3]. 
Table  2 summarizes the performance measures of the 
MCL HPL model for multiple- and single-layer cases. The 
original HPL model calculates the HPL runtime for the 
major components of the equations. Diff (%) in Table 1 is 
defined as (31) and ranges from 12.2% to 29.6%, with an 
average performance overestimation of 20.2%. In Tables 1 
and 2, the HPL efficiency (Eff.), which represents the 
measured or estimated performance (Rmax) over theoreti-
cal performance (Rpeak), is also listed for each system for 
comparison.

(30)

x
∑

j= 1

(

TCOMM,Lj

)

=

NL1

NB
∑

i= 1

(

TCOMM,L1 (i)
)

+. . .+

Nnew

NB
∑

i=
NL(x− 1)

NB
+ 1

(

TCOMM,Lx (i)
)

=

Nnew

NB
∑

i= 1

(

TCOMM,L1 (i)
)

.

F I G U R E  3   Comparisons of the estimated performance of 
an initial layer-one model (L1 Simulated Simple), the proposed 
first-layer MCL model (L1 Simulated MCL), and the measured 
performance of a P100 GPGPU system [Colour figure can be viewed 
at wileyonlinelibrary.com]
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Table 2 also presents two additional simulation results for 
the proposed MCL HPL model for each system: one for a 
single communication layer, and one for up to three commu-
nication layers. The MCL HPL model utilizes and calculates 
the times for each communication layer based on every com-
ponent of an equation. The Diff (%) column in Table  2 is 
similarly defined as (32), and for each MCL HPL cases, it 
decreases compared to the estimation results of the original 
HPL model in Table 1.

The MCL HPL model with a single communication layer 
calculates and estimates HPL performance based on the pa-
rameters of the main system interconnection network, and 
the MCL HPL model with multiple communication layers 
utilizes the communication parameters of each layer (such 
as HBM2/2e for the first layer and PCIe/NVLink and/or IB 
EDR/HDR for the second and third layers).

The absolute differences when using the MCL HPL model 
with a single-layer range from 11.4% to 26.5% with an av-
erage performance overestimation of 18.6%. In contrast, the 
MCL HPL model with multiple communication layers sig-
nificantly decreases the differences between the real values 
and model outputs. The absolute differences range from 1.2% 
to 18.1% with an average value of 7.5%.

Most systems modeled by the MCL HPL model exhibit small 
differences ranging from 1.2% to 9.8%, excluding the systems 
from [32,37]. It is assumed that the microarchitectures and/or 
network topology characteristics differ between systems. For 
the Fugaku system [32], the processor does not utilize GPGPU 
and the network applies a 6D torus topology. Therefore, there 
may be some discrepancies in model performance at the first 
layer (eg, the equivalent memory bandwidth per core) and 
second layer (eg, blocking ratio based on the torus topology). 

The Marconi100 system [37] utilizes a GPGPU (V100) and 
IB EDR DragonFly+. This topology groups several nodes to 
form a rank, but in the MCL HPL model, this structure is not 
reflected owing to a lack of information. Excluding these two 
special cases, the other GPGPU-based systems exhibit small 
and consistent errors, with an average difference of 4.1% for 
the MCL HPL (average difference of all listed system is 7.5%).

The network parameters for each layer in our simulations 
were determined based on the corresponding specifications 
and experimental results in [14,15,19–28,40–43].

5  |   EXPERIMENTS USING MCL 
HPL ON A GPU CLUSTER SYSTEM

In this section, the experimental results for a GPGPU cluster 
system are presented and compared to the simulation results 
of the proposed MCL HPL model.

(31)

Diff = absolute

(

Rmax of Original HPL

Rmax of TOP500
− 1

)

× 100 [%] .

(32)Diff = absolute

(

Rmax of MCL HPL

Rmax of TOP500
− 1

)

× 100 [%] .

F I G U R E  4   HD-PEX, a proprietary high-density multi-
GPU hardware subsystem [Colour figure can be viewed at 
wileyonlinelibrary.com]

F I G U R E  5   HD-PEX-based four-node GPGPU cluster test 
platform [Colour figure can be viewed at wileyonlinelibrary.com]
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T A B L E  3   Specifications of the HD-PEX multi-GPGPU system

Specifications Descriptions

Host server
Interface

Dual PCIe Gen3 × 16

Expansion
HW board

4 × PCIe Gen3 × 16 slots per 
SLED

Cooling Air cooled, dual 134 CFM fans 
per SLED

Power Dual 1600 W, 1 + 1 
redundancy per SLED

Chassis OCP Rack V1, 2 compliant, 3 
OU (Open rack Unit)

537 mm × 800 mm × 141 mm 
(W × L × H)

SLED enclosure OCP Rack V1, 2 compliant, 3 
OU (Open rack Unit)

175 mm × 800 mm × 138 mm 
(W × L × H)

www.wileyonlinelibrary.com
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5.1  |  Experimental environment setup

To evaluate the proposed MCL HPL model, a GPGPU cluster 
system based on a proprietary multi-GPU and high-density 
PCIe expansion system (HD-PEX) was developed and used 
as a test platform (Figures 4 and 5).

The HD-PEX hardware was developed to utilize multi-
ple GPGPUs for a one- (1 U) or two-rack-unit (2 U) general 
server by expanding the PCIe bus of the server through high-
speed cable assemblies. By using the HD-PEX hardware, a 
server that lacks GPGPU capability can easily expand and 

utilize multiple GPGPU systems with various configurations. 
The HD-PEX hardware has two PCIe connections and can 
be configured as one of four GPGPU systems per PCIe con-
nection or two GPGPU systems per PCIe connection (up to 
four GPGPU systems per SLED). In this experiment, three 
GPGPU systems per PCIe connection were considered.

Tables  3 and 4 list the specifications of the HD-PEX 
hardware and test platform, respectively. The test platform 
consists of four x86 nodes, where each node contains three 
NVIDA P100 GPGPU systems. Therefore, a total of 12 
GPGPU systems are used in the test platform.

Two test cases were set up and executed on the test 
platform.

•	 Test case A: Multi-GPGPU test on a single node with two 
communication layers: memory and PCIe

•	 Test case B: Multi-GPGPU test on multiple nodes with 
three communication layers: memory, PCIe, and Infiniband 
FDR.

5.2  |  Experimental results for the GPGPU 
cluster system

Based on the experimental environment and test case setup, 
measurement and simulation are performed for experimen-
tal GPGPU cluster. The experimental results for test case A 

T A B L E  4   Specifications of the test platform

Specifications Descriptions

Node CPU: Xeon E5-2650 v4, 12c @2.2 GHz
Memory: 256 GB, DDR4 1867 MHz
HD-PEX: 1 × SLED per node
Network: Single port IB FDR

Expansion HW One SLED per node, 3 × P100 per SLED

Network Switch IB FDR 12 ports

OS CentOS 7.6

OFED Mellanox OFED 4.6-1.0.1.1

MPI OpenMPI 1.10.2

CUDA Cuda 9.2

HPL Cuda based HPL

T A B L E  5   Performance comparisons between GPU clusters and the MCL HPL model

Configurations
Problem 
size (N)

Measured performance 
(GFLOPS)

Estimated performance of MCL HPL 
(GFLOPS)

Difference 
(%)

1-node

1 GPGPU (1N1G) 44 000 3882 3840 −1.07

2 GPGPU (1N2G) 62 000 7605 7389 −2.84

3 GPGPU (1N3G) 76 000 10 480 10 715 2.25

4 GPGPU (1N4G) 88 000 13 570 15 464 13.96

2-node

2 GPGPU (2N2G) 62 000 5878 6229 5.98

4 GPGPU (2N4G) 90 000 14 000 14 847 6.05

6 GPGPU (2N6G) 110 000 21 230 21 306 0.36

8 GPGPU (2N8G) 120 000 25 330 28 681 13.23

3-node

3 GPGPU (3N3G) 78 000 8403 7556 −10.08

6 GPGPU (3N6G) 110 000 21 460 21 480 0.09

9 GPGPU (3N9G) 130 000 30 980 31 710 2.36

12 GPGPU (3N12G) 152 000 39 960 45 381 13.57

4-node

4 GPGPU (4N4G) 88 000 14 420 14 677 1.79

8 GPGPU (4N8G) 124 000 26 320 27 621 4.94

12 GPGPU (4N12G) 152 000 40 050 41 077 2.57
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represent the absolute differences between estimates using 
the MCL HPL model with two communication layers and 
the measured performance values. The absolute differences 
(absolute value of ((MCL HPL)/Measured) − 1) range from 
1.07% to 13.96% with an average value of 5.03% (the average 
of absolute difference from 1N1G to 1N4G). For test case 
B (multiple nodes, two to four nodes), the absolute differ-
ences between the model and real system range from 0.09% 
to 13.57% with an average of 5.55% (the average of absolute 
difference from 2N2G to 4N12G). The performance values 
and differences are listed in Table 5.

In Table 5, the absolute differences of four GPUs per node 
configuration (1N4G, 2n8G, and 3N12G in Table  5) show 
large differences exceeding 13%. The main causes of the ab-
solute differences are suggested below:

•	 First, in the real HPL benchmark, the MPI is controlled by 
main CPU and requires some portion of bandwidth of PCIe 
for each GPU. In GPGPU cluster system test, each GPUs 
shares single PCIe channel. Because of the additional 
bandwidth usage for MPI control and communication be-
tween the CPU and each GPU, the actual PCIe bandwidth 
for communication is limited to less than the theoretical 

PCIe bandwidth. However, the MCL HPL model assumes 
that the bandwidth of PCIe is fully dedicated to MPI com-
munication only, and there is no interaction between CPU 
and GPUs. Due to these reasons, the MCL HPL model may 
over estimates the performance than real cases for four 
GPUs per node configurations.

•	 Second, the CPU controls parallel execution and synchro-
nization on each GPU and takes some time to control MPI 
tasks. This may reduce the performance in real cases, but 
not in the MCL HPL model.

In Figures 6 and 7, the test results exhibit similar behavior 
to those shown in Figure 3 for small problems. Based on a 
lack of microarchitectural details for the MCL HPL model, 
the MCL HPL model yields gaps between estimations and 
measurements, but for the maximum problem size, the differ-
ence converges to within a few percentage points.

6  |   CONCLUSIONS

In this work, a mathematical model for MCL HPL was pro-
posed, analyzed, modeled, and evaluated. Modern comput-
ing systems require more precise and accurate models for the 
prediction of system performance because the microarchitec-
tures, system architectures, and network architectures of such 
systems have changed rapidly over the past few decades.

Evaluations and experimental results demonstrated that 
the proposed MCL HPL model produces reasonable esti-
mates of performance for real systems ranging from individ-
ual accelerators to large cluster systems. Based on its ability 
to model multiple communication layers ranging from mem-
ory to hierarchical communication networks, the performance 
differences between the model results and measured results 
for the maximum problem size were significantly reduced 
from 20.2% for the original HPL model to 4.1% for the pro-
posed MCL HPL model for a large cluster system, on average.

Like any numerical model, the proposed MCL HPL 
model has some advantages and disadvantages. The errors 
between the proposed MCL HPL model and real systems are 
significantly reduced as a result of accurately modeling the 
communication layers. The proposed MCL HPL model can 
be applied to systems ranging from individual processors/
accelerators to large-scale clusters and can handle multiple 
communication layers simultaneously. However, the pro-
posed MCL HPL model does not support microarchitectures 
in detail and can introduce estimation gaps for small prob-
lems, compared to the maximum possible problem size. To 
develop a more accurate model, concerns regarding the mi-
croarchitectural details of processors and accelerators, as well 
as network topologies, should be considered in the future.

The experimental results for the proposed MCL HPL 
model revealed the performance difference of 1.1% for 

F I G U R E  6   Measured and simulated performance for test case A: 
one-node multi-GPGPU (1, 2, 3, and 4) [Colour figure can be viewed 
at wileyonlinelibrary.com]
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F I G U R E  7   Measured and simulated performance for test case B: 
four-node multi-GPGPU (4, 8, and 12) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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single-GPGPU case. Moreover, average absolute perfor-
mance differences of 5.5%, and 4.1% for a wide range of 
models and problem sizes (GPGPU cluster, and well-known 
large cluster systems, respectively). The proposed MCL HPL 
model can simulate large cluster systems with thousands or 
tens of thousands of nodes within a few seconds with a small 
error range compared to the original HPL model. It can also 
adopt future architectural changes in communication layers 
easily, such as the microarchitectures of next-generation pro-
cessors, accelerators, and future network systems.
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