
524  |  	﻿� ETRI Journal. 2021;43(3):524–537.wileyonlinelibrary.com/journal/etrij

1  |   INTRODUCTION

Supercomputing or high-performance computing (HPC) is
a computing systems area that requires strong computation
capabilities to solve scientific and/or engineering problems.
These types of computing systems typically consist of hun-
dreds or thousands of computing and storage nodes connected
via complex network equipment to create a cluster system. In
the initial system design stage, estimating the overall system
performance in various areas is important because it affects
several system characteristics, including the scale of the sys-
tem, required performance of each node, speed, and topology

of the interconnection network, storage capacity, and file
system performance. Therefore, one of the most important
factors in determining the system configuration of supercom-
puters and HPC systems is performance. To accurately eval-
uate system performance, system designers and engineers
perform simulations and estimations based on various sets of
performance benchmarks and mathematical models.

High-performance Linpack (HPL) is the most well-known
benchmark for evaluating and estimating the capabilities of
computing systems [1–4]. HPL has been used as the stan-
dard for comparing the performance of computing systems
since the early 1980s, and the results of the HPL benchmark

Received: 13 October 2020  |  Revised: 9 February 2021  |  Accepted: 25 February 2021

DOI: 10.4218/etrij.2020-0393

O R I G I N A L A R T I C L E

Multi-communication layered HPL model and its application to
GPU clusters

Young Woo Kim1   | Myeong-Hoon Oh1  | Chan Yeol Park2

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition + Change
Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).
1225-6463/$ © 2021 ETRI

1Artificial Intelligence Research Laboratory,
Electronics and Telecommunications
Research Institute, Daejeon, Rep. of Korea
2Center for Development of
Supercomputing System, Korea Institute
of Science and Technology Information,
Daejeon, Rep. of Korea

Correspondence
Young Woo Kim, Artificial Intelligence
Research Laboratory, Electronics and
Telecommunications Research Institute,
Daejeon, Rep. of Korea.
Email: bartmann@etri.re.kr

Funding information
This work was supported by the Creative
Allied Project program of National
Research Council of Science & Technology
(NST), Rep. of Korea (CAP-17-KISTI,
Development of heterogeneous many-core
hardware systems for a next-generation
high-performance computer).

High-performance Linpack (HPL) is among the most popular benchmarks for eval-
uating the capabilities of computing systems and has been used as a standard to
compare the performance of computing systems since the early 1980s. In the initial
system-design stage, it is critical to estimate the capabilities of a system quickly and
accurately. However, the original HPL mathematical model based on a single core and
single communication layer yields varying accuracy for modern processors and ac-
celerators comprising large numbers of cores. To reduce the performance-estimation
gap between the HPL model and an actual system, we propose a mathematical model
for multi-communication layered HPL. The effectiveness of the proposed model is
evaluated by applying it to a GPU cluster and well-known systems. The results reveal
performance differences of 1.1% on a single GPU. The GPU cluster and well-known
large system show 5.5% and 4.1% differences on average, respectively. Compared
to the original HPL model, the proposed multi-communication layered HPL model
provides performance estimates within a few seconds and a smaller error range from
the processor/accelerator level to the large system level.

K E Y W O R D S

GPU cluster, GPU model, HPL, Linpack, mathematical model, multi-communication layered
model

www.wileyonlinelibrary.com/journal/etrij
mailto:﻿
https://orcid.org/0000-0002-3435-737X
http://www.kogl.or.kr/info/licenseTypeEn.do
mailto:bartmann@etri.re.kr

     |  525KIM et al.

are used as a common metric for measuring the most pow-
erful computing systems in the world [5]. The HPL bench-
mark is a linear solver program that calculates the solution to
an N × N dense matrix problem. The benchmark calculates
and measures the number of floating-point operations per-
formed and the total time required for calculation. Therefore,
the HPL benchmark outputs metrics in the form of floating-
point operations per second (FLOPS) for computing systems.
Since the announcement of LINPACK 100, Linpack has con-
tinued to increase in scale and performance as the sizes of
target computing systems have grown from LINPAK 100 to
LINPACK 1000 and HPL [3].

Over the past few decades, significant breakthroughs and
performance enhancements related to processor microarchi-
tectures, memory, and network systems have been achieved
based on the development of multicore processors, acceler-
ators, high-bandwidth memory, 100 Gbps networks, and so
on. Based on these developments, many researchers have
attempted to enhance the HPL benchmark to evaluate state-
of-the-art architectures and gain additional FLOPS. HPL al-
gorithms focus on developing and enhancing the basic linear
algebra subprogram libraries for Linpack [6], research on
efficient block size determination [7], communication over-
head obfuscation during lower-upper (LU) factorization [8],
and fault tolerance [9]. In [10–13], efficient modifications
and adaptations of HPL to general-purpose computing on
graphics processing units (GPGPU) were investigated. The
roofline model and analysis of the processor performance
model [14,15] for various components of HPL have been
proposed, and evaluations of commodity systems [16] have
been presented.

The skeleton key algorithm and mathematical model of
HPL are still maintained and useful, even though the details
of their implementations have changed. Basic computation
time is proportional to the problem size N in O(N3) and com-
munication overhead in O(N2) [2]. The numerical model of
original HPL for performance estimation is based and as-
sumed the use of single processor per node and single layer
of system network. Based on the simplicity of this model,
system designers and engineers can easily estimate the per-
formance of a system at a first glance.

However, this simplicity can lead to system designers and
engineers over- or underestimating system performance as
technology advances. Recently, it has become common to
use multicore processors and/or accelerators, such as GPGPU
with multiple layers of communication networks in super-
computers and HPC [17–20]. These communication layers
include PCI Express (PCIe) and NVLink within nodes and
system interconnection networks.

With the use of accelerators and added communication
layers, the error between the measured and numerically es-
timated HPL performance becomes larger. The numerical
model of the original HPL with a simple processor and single

communication layer is not sufficient to estimate real-world
system performance.

In this paper, to reflect recent developments in proces-
sor/accelerator architectures and the multi-layered nature
of system interconnection networks, a numerical model for
multi-communication layered (MCL) HPL is proposed and
evaluated. By adopting multiple communication layers and
considering the characteristics of interconnection networks,
it is possible to derive more precise and robust results when
estimating system performance.

The MCL HPL model contributes to a more accurate esti-
mation of a system's performance, as follows:

•	 Multiple communication layered modeling method is pro-
posed: The proposed MCL HPL model can reflect commu-
nication overhead more precisely for each layer; thus, it can
produce less error in estimating the system performance
compared to the original HPL model.

•	 The MCL HPL model can be expanded to any number of
communication layers: The proposed methodology can
model single or multiple layers and provides flexibility in
modeling with enhanced precision.

•	 An accelerator model is proposed: For the first layer, an
abstracted accelerator model is proposed for more precise
estimation in multiple communication layers.

•	 A numerical model that requires multiple communication
layers can be modeled by the method used in the MCL
HPL model: The proposed modeling method provides
clues to decide the problem sizes and boundaries of each
communication layer for a given numerical model.

The remainder of this paper is organized as follows.
Section 2 briefly discusses the background of the HPL
model. The modeling of MCL HPL is described in Section 3.
Sections 4 and 5 present some preliminary results and analy-
sis for the proposed MCL HPL model and detailed application
results for an experimental GPU cluster system, respectively.
Finally, the conclusions and some additional considerations
regarding the proposed MCL HPL model are discussed in
Section 6.

2  |   BACKGROUND OF HPL

The HPL benchmark counts the number of floating-point
operations and measures the execution time to calculate the
FLOPS of a target system. The number of operations to solve
Ax = b for an N × N dense matrix using Gaussian elimination
is known to be (2N3/3 + 3N2/2). If a system requires t seconds
to solve a given problem, then the ideal performance of the
system is (2N3/3 + 3N2/2)/t FLOPS [2,3,7]. In a real comput-
ing system, the HPL benchmark is executed in parallel with
a message-passing method. An entire matrix is divided into

526  |     KIM et al.

small submatrices, which are distributed to every node in a
large system and executed in parallel. During parallel execu-
tion, there are many factors affecting ideal performance, such
as memory read and write speeds for calculation, copying
data to the network device, and data movement among nodes
via the network. Therefore, the HPL benchmark algorithm
is based on a parallel execution environment, and parallel
calculations reflect the system performance considering net-
work data movement and characteristics (initial latency and
bandwidth).

In the HPL benchmark, a randomly generated problem
matrix A (size of N × N) is processed in units called panels
and solved using the LU factorization method. The size of
the panels is defined as NB (block size), and the entire prob-
lem is divided into N/NB panels in each matrix dimension.
To distribute and execute these panels in parallel on a P × Q
processor (or node) grid, the problem matrix A is also divided
by P and Q (2D block cyclic fashion) to distribute blocks on
the processor grid evenly [7]. LU factorization performs two
major operations: panel factorization and updating, which
are performed on the problem matrix in the diagonal direc-
tion to derive a solution. LU factorization is a key part of
the HPL algorithm. The HPL algorithm is designed to solve
Ax = b, where the problem matrices A and b are given. The
equation Ax = b is transformed into LUx = Pb to solve vector
x using LU factorization. The equation LUx = Pb is consid-
ered as Ly = Pb and Ux = y, where P is a row-permutation
matrix. The HPL algorithm first finds pivot P for each NB-
size panel (pivoting and factorization), broadcasts and ex-
changes information in the column and row directions, and
finally performs permutation to calculate Ux = y (backward
substitution). The task is distributed on P × Q processors and
performed in parallel. The operations and performance are
thoroughly analyzed and described in [1–3,7,17].

According to [3,7], the numerical model (equation) of the
time required for panel factorization tpFact and updating tUpdate
for the ith panel are expressed by the following equations:

where γ is the floating-point operation rate of the matrix-matrix
operation, α is the initial latency of the network, and β is the
network speed [3,7]. After factorizing and updating the given

problem matrix and considering only the main terms in α, β,
and γ, the final numerical HPL model for execution time THPL
is simply expressed as

where TCALC is the time required for HPL calculation, and
TCOMM is the total communication time [3].

According to the THPL equation above, the perfor-
mance of a system is inversely proportional to the number
of problems in O(N3) from an execution perspective, and
the numbers of problems in O(N2) and O(N) from a data
movement perspective. Because data movement through a
system network incurs a much higher cost than the calcula-
tions themselves, the final performance of a system relies
heavily on the performance (latency and bandwidth) of the
corresponding network. Additionally, if a system utilizes
multiple layers of communication (multiple hierarchies of
networks in a system) and the differences in bandwidth be-
tween communication layers are large, then the final per-
formance estimation for that system differs from the result
provided by (3).

It is not unusual to utilize multiple communication layers
in state-of-the-art HPC systems. To fill the gaps in perfor-
mance estimation between the early mathematical model of
HPL and recent computing systems, it is necessary to develop
and consider the MCL nature of such computing systems.

3  |   MCL HPL MODEL

In this section, a mathematical model and algorithm for MCL
HPL are described.

3.1  |  Modeling of multi-communication
layers for HPL

In this section, a numerical model for MCL HPL is pre-
sented and discussed. In modern computing system archi-
tectures, there are many communication layers for memory
access, communication between processors through the
processor bus, between the processor and accelerator via
PCIe, among accelerators using proprietary intranetworks,
and for system level interconnects such as Infiniband (IB)
or Ethernet. These buses, intranetworks, and interconnect

(1)
tpFact = tpFact_CALC+ tpFact_COMM = �

(

N− i×NB

P
−

NB

3

)

×NB
2

+ (NB (logP)) (�+2�NB)+

(

�+�

(

(N− i×NB)NB

P

))

,

(2)

tUpdate = tUpdate_CALC+ tUpdate_COMM

= �

(

(N−(i−1)×NB)×NB
2

Q
+

2 ((N−(i−1))×NB)
2

NB

PQ

)

+

(

� (logP+P−1)+3�

(

(N−(i−1)×NB)NB

Q

))

,

(3)
THPL =TCALC+TCOMM =

(

�
2N3

3PQ

)

+

(

�
N ((NB+1) logP+P)

NB
+�

N2 (3P+Q)

2PQ

)

,

(4)TCALC = tpFact_CALC + tUpdate_CALC,

(5)TCOMM = tpFact_COMM + tUpdate_COMM,

     |  527KIM et al.

networks can be considered communication networks with
different characteristics at different levels. A precise and
accurate model must be able to identify and differentiate the
characteristics of the communication layers at each level.

3.1.1  |  The first layer: memory

Over the past decade, significant breakthroughs in memory
technology have been achieved, resulting in high-bandwidth
memory (HBM). HBM consists of 3D (or 2.5D) stacked
DRAM technology that provides terabit-per-second band-
widths and large bit widths per package [17,18,20]. HBM
can be integrated with conventional processors and/or ac-
celerators, though it requires some interconnection silicon
components, such as interposers. The use of HBM is growing
rapidly, particularly in accelerators such as GPUs. To reflect
the recent trends in HPC systems, the proposed model fo-
cuses on the use of accelerators (particularly GPUs) and the
communication characteristics of HBM in accelerators.

The first communication layer model considers memory as
a communication device that moves data from one location to
another location, similar to a typical network. Communication
in the first-layer comprises memory reads and writes between
the accelerator cores and memory. Therefore, the boundary
of the first communication layer is limited and assumed to be
within an accelerator containing local memory.

Based on these assumptions, the memory access latency
and access speed of HBM become the latency of the first layer
αL1 and speed of the network βL1, respectively. However, ap-
plying these parameters directly to an HPL model does not
yield an accurate performance estimate because the GPGPU
uses multiple HBM packages, and thousands of internal cores
access each HBM package simultaneously. In the proposed
model, GPGPU is considered to consist of one large, fast core

that provides the same theoretical performance as many cores
and one equivalent memory controller, as in Figure 1.

The theoretical memory bandwidth per core in actual
GPGPU can be modeled as dividing total memory bandwidth
(total memory bits multiplied by operation speed) by the
number of cores:

where BWperCore is the memory bandwidth per core, M is the
number of memory controllers, W is the number of quad-
words (QWs, 64 bits) per memory controller, H is the mem-
ory operation frequency, and C is the total number of actual
cores. However, each core in the real hardware shares mul-
tiple memory controllers; it is not sufficient to apply (6) di-
rectly as the bandwidths of model processor. The bandwidth
of the equivalent memory controller (BWEq) is modeled by
multiplying (6) by (M × W), because one large model core can
access (M × W) QWs simultaneously using one equivalent
memory controller:

where BWEq is the equivalent bandwidth for the model core.
αL1 is the access latency, and βL1 is the speed of the

first layer (memory access), and their final values are ex-
pressed using the equivalent bandwidth, as in (8) and (9),
respectively.

Generally, the theoretical maximum performance (Rpeak) of
the real GPGPU and the proposed model is calculated by (10).

where C is number of cores, F is number of floating operations
per cycle, and S is the operating frequency [3]. By applying αL1
and βL1 to (1) and (2) and accumulating accordingly, the com-
plete TCALC,L1 and TCOMM,L1 estimates for the first communica-
tion layer are expressed as (11) and (12), respectively.

(6)BWperCore =
(M × W) × H

C
,

(7)BWEq =
(M × W)

2 × H

C
,

(8)�
L1 =

number of cyecles for accessing data

BWEq

,

(9)�L1 =
1

BWEq

.

(10)Rpeak = C × F × S [FLOPS] ,

(11)
TCALC,L1 = �L1

2N3
L1

3PQ
+�L1

(

NB (3Q+3P+6)N2
L1

6PQ

)

+�L1

(

NB2 ((3P+2)−(2P+3)Q)N2
L1

6PQ

)

,F I G U R E 1   An equivalent GPGPU model for the
first communication layer [Colour figure can be viewed at
wileyonlinelibrary.com]

Actual processor
(GPGPU)

One big and fast core

(C × F) × S FLOPS

MEMCeq

equivalent

Model processor

MEMC MEMC

MEMC MEMC

Parameters Actual processor Model processor
Number of cores C cores 1 cores
FLOP/core F FLOP / core C × F FLOP / core
Operating frequency S Hz S Hz
Number of controller M controllers 1 controller
Number of QW/memc. W quad-words (64bits) M × W quad-words (64bits)
Operating frequency H Hz H Hz

www.wileyonlinelibrary.com

528  |     KIM et al.

where the subscript L1 indicates that each corresponding pa-
rameter belongs to the first communication layer. THPL,L1 is the
sum of (11) and (12). If α = αL1, β = βL1, γ = γL1, and N = NL1,
the sum of (11) and (12) is simplified to (3).

3.1.2  |  The second layer: intranetwork

As supercomputing and HPC systems continue to utilize
accelerators such as GPUs and improve the performance
of input/output (I/O) interconnection, data movement
among accelerators becomes increasingly rapid. PCIe is
the de facto standard for I/O subsystems, and the speed
of PCIe has been enhanced from 2.5 Gbps per lane to
32 Gbps per lane and is still evolving [19,21–23]. By
providing peer-to-peer data movement among I/O de-
vices, modern PCIe provides much greater speeds com-
pared to when it first appeared. If a node supports 16
lanes at a speed of 32 Gbps per lane, then the theoretical
speed among PCIe devices is 512 Gbps and the perfor-
mance exceeds the existing system interconnection (the
speed of Infiniband HDR for 4x links is 400 Gbps). In
addition to PCIe, NVIDIA provides a proprietary intra-
interconnection network called NVLink with a speed of
50 GT/s per lane [23–25].

In the proposed model, these types of intranode intercon-
nection networks are defined as the second communication
layer. The characteristics of the second communication layer
can be summarized as follow:

•	 Communication is typically limited to within a node bound-
ary and up to tens of accelerators: The number of acceler-
ators and size of the problem are limited to the boundary
of node to obtain best communication performance and re-
duce hardware and software communication intervention.
TCALC and TCOMM are applied starting from the boundary
of the first layer to the node boundary (the total memory of
the accelerators in a node).

•	 The communication speed exceeds that of conventional in-
terconnection networks: The network is based on I/O bus
or intranetwork in a node. The second layer is implemented
fully in hardware, including control, to minimize software
intervention, and the physical distance between two de-
vices is very short compared to that in a conventional net-
work. Therefore, α and β of the second layer differ from
those of a conventional network (more efficient and faster).

•	 Direct peer-to-peer communication is provided between
accelerators: modern I/O bus and intranetwork provide
hardware-based peer-to-peer communication to eliminate
data copies between I/O devices and main memory and
provide direct data movement between devices. The peer-
to-peer communication contributes to enhance the commu-
nication bandwidth and throughput (so the α and β of the
second layer are faster than the conventional network).

The access latency between peer devices is defined in the
second layer as αL2 and the link speed between peer devices
becomes the speed of network βL2 for the problem size of NL2.
HPL communication time in the second layer is generally ex-
pressed by (13) and (14),

where NL1 is problem size of the first layer. By applying Equations
(4) and (5) to (13) and (14), the total execution time THPL for the
second communication layer (THPL,L2) can be obtained.

3.1.3  |  The third layer and above:
conventional network

The third and higher communication layers are conventional
system-wide interconnection network layers. For these types
of system interconnections in supercomputing and HPC sys-
tems, infiniband is the most practical commercial intercon-
nect, owing to its high speed and support of remote direct
memory access in hardware. Conventional Ethernet is also
widely used in systems, for which communication among
applications and nodes is not critical. For top-tier super-
computing systems, to achieve more FLOPS and enhanced
system-wide performance, more efficient and high-speed pro-
prietary system interconnects are adopted based on topology
concerns, such as TOFUD and Aries Dragonfly [26–29].

The HPL communication time of the third and above lay-
ers follows the conventional model and is expressed by (15)
and (16) in general form.

(12)
TCOMM,L1 =�

L1

N
L1 ((NB+1) logP+P)

NB
+�

L1

N
2
L1
(Q+3P)

2PQ

+�
L1

N
L1 (NB ((4logP−1)Q+3P)+8PQlogP)

2PQ
,

(13)

TCALC,L2 =

end_of_L2
∑

start_of_L2

(

tpFact_CALC+ tUpdate_CALC

)

=�L2

NL2−NL1

NB

+�L2

N2
L2
−2NL2NL1−

(

NL2−NL1

)

NB+N2
L1

2P
,

(14)

TCOMM,L2 =

end_of_L2
∑

start_of_L2

(

tpFact_COMM+ tUpdate_COMM

)

=�L2 (logP+P−1)
NL2−NL1

NB

+3�L2

N2
L2
−2NL2NL1+

(

NL2−NL1

)

NB+N2
L1

2Q
,

     |  529KIM et al.

where x indicates the corresponding communication layer num-
ber, and the access latency of the layer x as αLx and the speed
of network βLx. The problem size NLx is the total memory size
belonging to layer x, and NL(x−1) is the memory size of the lower
layer. THPL,Lx of arbitrary layer x is the sum of (15) and (16).

3.1.4  |  Determination of layer boundaries and
generalization

To work with MCL HPL, it is necessary to clearly identify
and define the boundaries of each communication layer.
Most supercomputing and/or HPC systems have one, two, or
three communication layers. The LU factorization calcula-
tion and communication time are divided among each com-
munication layer. The size of the first layer is clear because
it is bounded by the amount of GPGPU memory. The bound-
ary for the column direction of an N × N problem matrix is
a function of P and Q for HPL. The size of the final commu-
nication layer is also obvious and is N × N in each direction.
The intermediate layers depend on the scale of the accelera-
tors and/or nodes in those layers, and their boundaries are
somewhat ambiguous. In this paper, the following boundary
decision mechanisms are proposed for the MCL HPL model.

3.1.4.1  |  Boundary for the first layer
The HPL algorithm divides an N × N problem matrix into
P × Q submatrices to process on P × Q processors (or ac-
celerators) in divide and conquer fashion. If an arbitrary size
N is not exactly divisible by NB, then some units of the sub-
matrices (that form many NB × NB panels) are padded with
zeros to achieve the correct matrix dimensions. To simplify
this process and reduce the complexity of model construc-
tion, a new size Nnew is defined as (17).

The Nnew × Nnew matrix is divided to form P × Q subma-
trices of size mL1 × nL1, as shown in Figure 2. Nnew is also
divided by P and Q in each matrix dimension. The sizes mL1
and nL1 for the units of the submatrices are defined by (18)
and (19) and applied as NL1 for THPL,L1.

3.1.4.2  |  Boundary for the intermediate layers
The problem size and grid assignment in the second layer and
above (excluding the final layer) vary according to the system
configuration. The size is dependent on the capacity and grid
assignment of each new layer, which represent how many ac-
celerators can be equipped within a node and how they are
divided into grids in the corresponding layer. The grid assign-
ment for intermediate layers is strongly dependent on the rank
assignment of the message-passing interface (MPI) and job
distribution, which are not major considerations of the MCL
HPL model. Therefore, the proposed MCL model follows the
basic HPL P and Q guidelines for these intermediate layers
[30], and mLx and nLx are applied as NLx to calculate THPL,Lx.

•	 If the total ranks in the intermediate layer Lx are equal to
pLx and qLx, then the subgrid for layer Lx is made as square
as possible (pLx ≤ qLx).

•	 If either pLx or qLx is a prime number, then we follow the
original grid distribution of P and Q.

3.1.4.3  |  Boundary of the final layer
The last layer includes all the problems of HPL, so the prob-
lem size in this layer is equal to N (or Nnew).

3.1.4.4  |  Generalization of MCL HPL
The proposed MCL HPL model calculates the time required
for factorization and communication according to the range
of each communication layer. By applying the parameters in
(8), (9), and (17)–(21) to (1) and (2), THPL can be derived as
shown in (22) for all communication layers.

(15)

TCALC,Lx
=

end_of_Lx
∑

start_of_Lx

(

tpFact_CALC+ tUpdate_CALC

)

=�
Lx

N
Lx
−N

L(x−1)

NB

+�
Lx

N
2
Lx
−2N

Lx
N

L((x−1) −
(

N
Lx
−N

L(x−1)

)

NB+N
2
L(x−1)

2P
,

(16)

TCOMM,Lx =

end_of_Lx
∑

start_of_Lx

(

tpFact_COMM+ tUpdate_COMM

)

=�Lx (logP+P−1)
NLx−NL(x−1)

NB

+3�Lx

N2
Lx
−2NLxNL(x−1) +

(

NLx−NL(x−1)

)

NB+N2
L(x−1)

2Q
,

(17)Nnew = NB × ceil
(

N

NB

)

.

(18)mL1 = NB × ceil

(

Nnew

NB × P

)

,

(19)nL1 = NB × ceil

(

Nnew

NB × Q

)

.

(20)mLx = NB × ceil

(

Nnew

NB × pLx

)

,

(21)nL1 = NB × ceil

(

Nnew

NB × qLx

)

.

(22)THPL = TCALC + TCOMM =

x
∑

j= 1

(

TCALC,Lj + TCOMM,Lj

)

,

530  |     KIM et al.

where j is the communication layer index. TCALC,Lj and TCOMM,Lj
are expressed in (23) and (24).

where i is a panel number that is included in the corresponding
communication layer j. Nnew is the total size of problem as in
(17), and NL(x−1) is the size of memory of lower layer. In (23),
the calculation time is invariant with respect to communica-
tion parameters αLx and βLx, and γ is the same for all processors
or accelerators (α = αLx and β = βLx). Therefore, TCALC is as
follows:

In (24), TCOMM,Lj consists of three communication compo-
nents, as in (26). These communication components for piv-
oting, broadcasting, and updating are defined in (27), (28),
and (29), respectively. The communication parameters αLj
and βLj must be considered in each communication layer j.
The total time required for each communication component
is generalized and calculated as demonstrated in (26)–(29).

where mLj and nLj are the problem matrix dimensions in the jth
layer (refer to Figure 2(A)). The final THPL value is obtained
by summing all the calculation and communication times of all
communication layers by applying (22), (25), and (26).

3.1.4.5  |  Verification of MCL HPL
The proposed MCL HPL model expands communication
layers from single layer (the original HPL model) to multi-
layers. As calculation time is invariant to the communication
parameters, the O(N3) term in TCALC of the MCL HPL (25) is
same for the original equation, (3). For TCOMM, if there exists
only one communication layer, then (24) can be simplified as
(30), which leads to the same results (α and β terms) as (3).

(23)

TCALC =

x
∑

j= 1

TCALC,Lj =

NL1

NB
∑

i= 1

TCALC,L1 i +

NL2

NB
∑

i=
NL1

NB
+ 1

TCALC,L2 i

+

NL3

NB
∑

i=
NL2

NB
+ 1

TCALC,L3 i +. . .+

Nnew

NB
∑

i=
NL x− 1

NB
+ 1

TCALC,Lx i ,

(24)

TCOMM =

x
∑

j= 1

TCOMM,Lj =

NL1

NB
∑

i= 1

TCOMM,L1 i +

NL2

NB
∑

i=
NL1

NB
+ 1

TCOMM,L2 i

+

NL3

NB
∑

i=
NL2

NB
+ 1

TCOMM,L3 i +. . .+

Nnew

NB
∑

i=
NL x− 1

NB
+ 1

TCOMM,Lx i ,

(25)

TCALC =

x
∑

j= 1

(

TCALC,Lj

)

=

Nnew

NB
∑

i= 1

(

tpFact_CALC (i)+ tUpdate_CALC (i)
)

= �
2N3

new

3PQ
+�

(

NB (3Q+3P+6))N2
new

6PQ

)

+�

(

NB2 ((3P+2)−(2P+3)Q)N2
Nnew

6PQ

)

.

(26)
TCOMM,Lj = Tpivot_COMM,Lj + Tbroadcast_COMM,Lj + Tupdate_COMM,Lj,

(27)

Tpivot_COMM,Lj = NB (logP)
(

�j + � j (2NB + 4)
)

(

mj − mj−1

NB

)

,

(28)

Tboradcast_COMM,Lj =�j

(

mj−mj−1

NB

)

+� j

(

m2
j
−2mjmj−1−

(

mj−mj−1

)

NB+m2
j−1

2P

)

,

(29)

TUpdate_COMM,Lj =�j (logP+P−1)

(

nj−nj−1

NB

)

+3� j

(

n2
j
−2njnj−1+

(

nj−nj−1

)

NB+n2
j−1

2Q

)

,

F I G U R E 2   Problem matrix boundaries between layers. (A)
Represents the concept of overall boundaries respect to total problem
size N, and (B) is the representation example for 2 × 2 (P × Q) block
cyclic distribution [Colour figure can be viewed at wileyonlinelibrary.
com]

(A)

(B)

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com

     |  531KIM et al.

The main difference between the original HPL model and
the MCL HPL model comes from the communication param-
eter differences. The original HPL model takes the commu-
nication parameter (α and β) values from the last layer, but
the MCL HPL model takes communication parameters from
each detailed communication layer. Usually, α and β for the
last communication layer are larger than that of lower layers
(αlast_layer ≥ αlower_layer and βlast_layer ≥ βlower_layer), the original
HPL model over estimates the communication overhead than
the MCL HPL.

4  |   SIMULATION USING THE MCL
HPL MODEL

The proposed MCL HPL model was implemented and
evaluated in this study. For preliminary evaluation, a single-
GPGPU system and some well-known large cluster systems
were simulated using the proposed MCL HPL model.

4.1  |  Single-GPGPU system

The first-layer model in the proposed MCL HPL model is a
special model for a processor and/or accelerator and is well
suited to GPGPU-like accelerators. To evaluate the first-
layer model, a P100 GPGPU system from NVIDIA was mod-
eled, evaluated using MCL HPL model, and measured and
compared with real performance measurement according to
various problem size.

Because the first-layer model is based on the equivalent
bandwidth of HBM in an accelerator, two types of model eval-
uation were performed and the results were compared to the
measured results. One is the bandwidth parameter calculated as
a simple numerical sum (“L1 Simulated Simple”), and the other
is the bandwidth parameter calculated by the proposed method
(“L1 Simulated MCL,” equivalent bandwidth parameter).

The P100 GPGPU system contains four HBM2 packages
with a total bandwidth of 732.2 GB/s with 204 MB/s per core
[31]. The equivalent bandwidth per core based on the MCL
HPL model is 13 GB/s per core. An initial latency of 1029
cycles was considered based on [18]. The total bandwidth was
applied and simulated for the L1 Simulated Simple case, and
the equivalent bandwidth was applied to the L1 Simulated
MCL case. The results are presented in Figure 3. One can see
that the proposed MCL HPL case (L1 Simulated MCL) has
a much smaller error rate than the L1 Simulated MCL case
relative to the measured results. For a problem size of 44 000
(corresponding to 93% of the total HBM memory), the pro-
posed MCL HPL model exhibits a relatively small (−1.07%
error, 3840 GFLOPS) compared to the L1 Simulated Simple
case (11.99% error, 4347 GFLOPS) relative to the measured
performance (3882 GFLOPS).

In Figure 3, there is a relatively large gap between the es-
timated and measured results, particularly for small problem
sizes (up to 25 000). This gap stems from details of the mi-
croarchitecture that are not considered in the proposed MCL
HPL model. The data and core allocation for problems, cache
operation characteristics, memory access patterns, and other
architectural details may affect this gap.

However, these errors are generally not problematic because
a system typically utilizes the full memory of each GPGPU and
the maximum problem size to achieve more FLOPS.

4.2  |  Large cluster system

To validate the scalability of the proposed MCL HPL
model for large systems, some of the most well-known
systems [32–39] from the TOP500 site [5] were modeled
and simulated using the MCL HPL and the original HPL
model. Table 1 summarizes the reported and estimated
performance measures using the original HPL model [3].
Table 2 summarizes the performance measures of the
MCL HPL model for multiple- and single-layer cases. The
original HPL model calculates the HPL runtime for the
major components of the equations. Diff (%) in Table 1 is
defined as (31) and ranges from 12.2% to 29.6%, with an
average performance overestimation of 20.2%. In Tables 1
and 2, the HPL efficiency (Eff.), which represents the
measured or estimated performance (Rmax) over theoreti-
cal performance (Rpeak), is also listed for each system for
comparison.

(30)

x
∑

j= 1

(

TCOMM,Lj

)

=

NL1

NB
∑

i= 1

(

TCOMM,L1 (i)
)

+. . .+

Nnew

NB
∑

i=
NL(x− 1)

NB
+ 1

(

TCOMM,Lx (i)
)

=

Nnew

NB
∑

i= 1

(

TCOMM,L1 (i)
)

.

F I G U R E 3   Comparisons of the estimated performance of
an initial layer-one model (L1 Simulated Simple), the proposed
first-layer MCL model (L1 Simulated MCL), and the measured
performance of a P100 GPGPU system [Colour figure can be viewed
at wileyonlinelibrary.com]

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5000 10 000 15 000 25 000 30 000 35 000 40 000

Single GPU (P100) performance

Measured Perf. L1 Simulated Simple L1 Simulated MCL

20 000

Problem size (N)

GFLOPS

www.wileyonlinelibrary.com

532  |     KIM et al.

T
A

B
L

E
 1

 
Su

m
m

ar
y

of
 re

po
rte

d
an

d
es

tim
at

ed
 p

er
fo

rm
an

ce
 m

ea
su

re
s f

or
 th

e
or

ig
in

al
 H

PL
 fo

r w
el

l-k
no

w
n

sy
st

em
s o

n
TO

P5
00

.o
rg

 [5
]

Sy
st

em

of

N
od

es

TO
P5

00
, J

un
e

20
20

O
ri

gi
na

l H
PL

 [3
]

N
et

w
or

k
D

iff

(%
)

R m
ax

(P

FL
O

PS
)

R p
ea

k
(P

FL
O

PS
)

N
m

ax
Ef

f.
(%

)
R m

ax

(P
FL

O
PS

)
R p

ea
k

(P
FL

O
PS

)
N

m
ax

Ef
f.

(%
)

Fu
ga

ku
 [3

2]
15

2
06

4
41

5.
53

51
3.

85
20

 4
59

 5
20

80
.9

49
8.

45
51

3.
85

20
 4

86
 0

16
97

.0
TO

FU
D

20
.0

Su
m

m
it

[3
3]

46
08

14
8.

60
20

0.
79

16
 4

73
 6

00
74

.0
18

8.
21

20
5.

97
16

 4
52

 0
96

91
.4

IB
 E

D
R

26
.7

Si
er

ra
 [3

4]
43

20
94

.6
4

12
5.

71
11

 9
02

 4
64

75
.3

11
0.

08
12

8.
73

11
 9

90
 0

16
85

.5
IB

 E
D

R
16

.3

H
PC

5
[3

5]
18

20
35

.4
5

51
.7

2
5

75
0

78
4

68
.5

45
.9

3
51

.4
4

5
74

6
17

6
89

.3
IB

 H
D

R
29

.6

Se
le

ne
 [3

6]
22

0
27

.5
8

34
.5

7
3

36
3

84
0

79
.8

32
.8

3
34

.3
1

3
38

4
19

2
95

.7
IB

 H
D

R
19

.0

M
ar

co
ni

10
0

[3
7]

98
0

21
.6

4
29

.3
5

2
72

2
13

7
73

.7
24

.2
7

29
.5

0
2

72
8

32
0

82
.3

IB
 E

D
R

 D
ra

go
nf

ly
12

.2

Pi
x-

D
ai

nt
 [3

8]
57

04
21

.2
3

27
.1

5
3

74
3

23
2

78
.2

26
.4

2
27

.1
5

3
75

6
28

8
97

.3
A

rie
s D

ra
go

nf
ly

24
.4

D
G

X
 S

up
er

Po
d

[3
9]

96
9.

44
11

.2
1

2
51

9
23

2
84

.3
10

.6
8

11
.1

9
2

47
8

33
6

95
.5

IB
 E

D
R

13
.1

T
A

B
L

E
 2

 
Su

m
m

ar
y

of
 e

st
im

at
ed

 p
er

fo
rm

an
ce

 m
ea

su
re

s f
or

 si
ng

le
 la

ye
rs

 a
nd

 m
ul

tip
le

 la
ye

rs
 u

si
ng

 th
e

pr
op

os
ed

 M
C

L
H

PL
 m

od
el

Sy
st

em

M
C

L
H

PL
 -

sin
gl

e
co

m
m

un
ic

at
io

n
la

ye
r

M
C

L
H

PL
 -

m
ul

ti-
co

m
m

un
ic

at
io

n
la

ye
rs

R m
ax

(P

FL
O

PS
)

R p
ea

k
(P

FL
O

PS
)

N
m

ax

Ef
f.

(%
)

D
iff

(%

)
R m

ax

(P
FL

O
PS

)
R p

ea
k

(P
FL

O
PS

)
N

m
ax

Ef
f.

(%
)

C
om

m
un

ic
at

io
n

la
ye

r
D

iff

(%
)

1s
t

2n
d

3r
d

Fu
ga

ku
 [3

2]
48

7.
42

51
3.

85
20

 4
86

 0
16

94
.9

17
.3

48
6.

88
51

3.
85

20
 4

86
 0

16
94

.7
H

B
M

2
TO

H
U

D
-

17
.2

Su
m

m
it

[3
3]

18
7.

94
20

5.
97

16
 4

70
 1

44
91

.2
26

.5
15

7.
36

20
5.

97
16

 4
70

 1
44

76
.4

H
B

M
2

N
V

Li
nk

2
IB

 E
D

R
5.

9

Si
er

ra
 [3

4]
11

1.
56

12
8.

73
11

 7
56

 1
60

86
.7

17
.9

93
.1

0
12

8.
73

11
 7

56
 1

60
72

.3
H

B
M

2
N

V
Li

nk
2

IB
 E

D
R

1.
6

H
PC

5
[3

5]
44

.5
3

51
.4

4
5

72
2

36
8

86
.6

25
.6

37
.1

9
51

.4
4

5
72

2
36

8
72

.3
H

B
M

2
PC

Ie
 G

3
IB

 H
D

R
4.

9

Se
le

ne
 [3

6]
32

.1
8

34
.3

1
3

36
8

06
4

93
.8

16
.7

27
.9

2
34

.3
1

3
38

2
27

2
81

.4
H

B
M

2e
N

V
Li

nk
2

IB
 H

D
R

1.
2

M
ar

co
ni

10
0

[3
7]

24
.2

2
29

.5
0

2
72

8
32

0
82

.1
11

.9
17

.7
2

29
.5

0
2

72
8

32
0

60
.1

H
B

M
2

N
V

Li
nk

2
IB

 E
D

R
18

.1

Pi
x-

D
ai

nt
 [3

8]
25

.8
1

27
.1

5
3

75
6

28
8

95
.1

21
.6

21
.5

0
27

.1
5

3
75

6
28

8
79

.2
H

B
M

2
A

rie
s

A
rie

s
1.

3

D
G

X
 S

up
er

Po
d

[3
9]

10
.5

2
11

.1
9

2
47

8
33

6
94

.0
11

.4
8.

52
11

.1
9

2
47

8
33

6
76

.1
H

B
M

2
N

V
Li

nk
2

IB
 E

D
R

9.
8

     |  533KIM et al.

Table 2 also presents two additional simulation results for
the proposed MCL HPL model for each system: one for a
single communication layer, and one for up to three commu-
nication layers. The MCL HPL model utilizes and calculates
the times for each communication layer based on every com-
ponent of an equation. The Diff (%) column in Table 2 is
similarly defined as (32), and for each MCL HPL cases, it
decreases compared to the estimation results of the original
HPL model in Table 1.

The MCL HPL model with a single communication layer
calculates and estimates HPL performance based on the pa-
rameters of the main system interconnection network, and
the MCL HPL model with multiple communication layers
utilizes the communication parameters of each layer (such
as HBM2/2e for the first layer and PCIe/NVLink and/or IB
EDR/HDR for the second and third layers).

The absolute differences when using the MCL HPL model
with a single-layer range from 11.4% to 26.5% with an av-
erage performance overestimation of 18.6%. In contrast, the
MCL HPL model with multiple communication layers sig-
nificantly decreases the differences between the real values
and model outputs. The absolute differences range from 1.2%
to 18.1% with an average value of 7.5%.

Most systems modeled by the MCL HPL model exhibit small
differences ranging from 1.2% to 9.8%, excluding the systems
from [32,37]. It is assumed that the microarchitectures and/or
network topology characteristics differ between systems. For
the Fugaku system [32], the processor does not utilize GPGPU
and the network applies a 6D torus topology. Therefore, there
may be some discrepancies in model performance at the first
layer (eg, the equivalent memory bandwidth per core) and
second layer (eg, blocking ratio based on the torus topology).

The Marconi100 system [37] utilizes a GPGPU (V100) and
IB EDR DragonFly+. This topology groups several nodes to
form a rank, but in the MCL HPL model, this structure is not
reflected owing to a lack of information. Excluding these two
special cases, the other GPGPU-based systems exhibit small
and consistent errors, with an average difference of 4.1% for
the MCL HPL (average difference of all listed system is 7.5%).

The network parameters for each layer in our simulations
were determined based on the corresponding specifications
and experimental results in [14,15,19–28,40–43].

5  |   EXPERIMENTS USING MCL
HPL ON A GPU CLUSTER SYSTEM

In this section, the experimental results for a GPGPU cluster
system are presented and compared to the simulation results
of the proposed MCL HPL model.

(31)

Diff = absolute

(

Rmax of Original HPL

Rmax of TOP500
− 1

)

× 100 [%] .

(32)Diff = absolute

(

Rmax of MCL HPL

Rmax of TOP500
− 1

)

× 100 [%] .

F I G U R E 4   HD-PEX, a proprietary high-density multi-
GPU hardware subsystem [Colour figure can be viewed at
wileyonlinelibrary.com]

F I G U R E 5   HD-PEX-based four-node GPGPU cluster test
platform [Colour figure can be viewed at wileyonlinelibrary.com]

IB
FDR

switch
(12p)

IB CPU 0

Memory

GPU 02

-

GPU 00

GPU 01

IB CPU 0

Memory

GPU 02

-

GPU 00

GPU 01

IB CPU 0

Memory

GPU 02

-

GPU 00

GPU 01

IB CPU 0

Memory

GPU 02

-

GPU 00

GPU 01

T A B L E 3   Specifications of the HD-PEX multi-GPGPU system

Specifications Descriptions

Host server
Interface

Dual PCIe Gen3 × 16

Expansion
HW board

4 × PCIe Gen3 × 16 slots per
SLED

Cooling Air cooled, dual 134 CFM fans
per SLED

Power Dual 1600 W, 1 + 1
redundancy per SLED

Chassis OCP Rack V1, 2 compliant, 3
OU (Open rack Unit)

537 mm × 800 mm × 141 mm
(W × L × H)

SLED enclosure OCP Rack V1, 2 compliant, 3
OU (Open rack Unit)

175 mm × 800 mm × 138 mm
(W × L × H)

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com

534  |     KIM et al.

5.1  |  Experimental environment setup

To evaluate the proposed MCL HPL model, a GPGPU cluster
system based on a proprietary multi-GPU and high-density
PCIe expansion system (HD-PEX) was developed and used
as a test platform (Figures 4 and 5).

The HD-PEX hardware was developed to utilize multi-
ple GPGPUs for a one- (1 U) or two-rack-unit (2 U) general
server by expanding the PCIe bus of the server through high-
speed cable assemblies. By using the HD-PEX hardware, a
server that lacks GPGPU capability can easily expand and

utilize multiple GPGPU systems with various configurations.
The HD-PEX hardware has two PCIe connections and can
be configured as one of four GPGPU systems per PCIe con-
nection or two GPGPU systems per PCIe connection (up to
four GPGPU systems per SLED). In this experiment, three
GPGPU systems per PCIe connection were considered.

Tables 3 and 4 list the specifications of the HD-PEX
hardware and test platform, respectively. The test platform
consists of four x86 nodes, where each node contains three
NVIDA P100 GPGPU systems. Therefore, a total of 12
GPGPU systems are used in the test platform.

Two test cases were set up and executed on the test
platform.

•	 Test case A: Multi-GPGPU test on a single node with two
communication layers: memory and PCIe

•	 Test case B: Multi-GPGPU test on multiple nodes with
three communication layers: memory, PCIe, and Infiniband
FDR.

5.2  |  Experimental results for the GPGPU
cluster system

Based on the experimental environment and test case setup,
measurement and simulation are performed for experimen-
tal GPGPU cluster. The experimental results for test case A

T A B L E 4   Specifications of the test platform

Specifications Descriptions

Node CPU: Xeon E5-2650 v4, 12c @2.2 GHz
Memory: 256 GB, DDR4 1867 MHz
HD-PEX: 1 × SLED per node
Network: Single port IB FDR

Expansion HW One SLED per node, 3 × P100 per SLED

Network Switch IB FDR 12 ports

OS CentOS 7.6

OFED Mellanox OFED 4.6-1.0.1.1

MPI OpenMPI 1.10.2

CUDA Cuda 9.2

HPL Cuda based HPL

T A B L E 5   Performance comparisons between GPU clusters and the MCL HPL model

Configurations
Problem
size (N)

Measured performance
(GFLOPS)

Estimated performance of MCL HPL
(GFLOPS)

Difference
(%)

1-node

1 GPGPU (1N1G) 44 000 3882 3840 −1.07

2 GPGPU (1N2G) 62 000 7605 7389 −2.84

3 GPGPU (1N3G) 76 000 10 480 10 715 2.25

4 GPGPU (1N4G) 88 000 13 570 15 464 13.96

2-node

2 GPGPU (2N2G) 62 000 5878 6229 5.98

4 GPGPU (2N4G) 90 000 14 000 14 847 6.05

6 GPGPU (2N6G) 110 000 21 230 21 306 0.36

8 GPGPU (2N8G) 120 000 25 330 28 681 13.23

3-node

3 GPGPU (3N3G) 78 000 8403 7556 −10.08

6 GPGPU (3N6G) 110 000 21 460 21 480 0.09

9 GPGPU (3N9G) 130 000 30 980 31 710 2.36

12 GPGPU (3N12G) 152 000 39 960 45 381 13.57

4-node

4 GPGPU (4N4G) 88 000 14 420 14 677 1.79

8 GPGPU (4N8G) 124 000 26 320 27 621 4.94

12 GPGPU (4N12G) 152 000 40 050 41 077 2.57

     |  535KIM et al.

represent the absolute differences between estimates using
the MCL HPL model with two communication layers and
the measured performance values. The absolute differences
(absolute value of ((MCL HPL)/Measured) − 1) range from
1.07% to 13.96% with an average value of 5.03% (the average
of absolute difference from 1N1G to 1N4G). For test case
B (multiple nodes, two to four nodes), the absolute differ-
ences between the model and real system range from 0.09%
to 13.57% with an average of 5.55% (the average of absolute
difference from 2N2G to 4N12G). The performance values
and differences are listed in Table 5.

In Table 5, the absolute differences of four GPUs per node
configuration (1N4G, 2n8G, and 3N12G in Table 5) show
large differences exceeding 13%. The main causes of the ab-
solute differences are suggested below:

•	 First, in the real HPL benchmark, the MPI is controlled by
main CPU and requires some portion of bandwidth of PCIe
for each GPU. In GPGPU cluster system test, each GPUs
shares single PCIe channel. Because of the additional
bandwidth usage for MPI control and communication be-
tween the CPU and each GPU, the actual PCIe bandwidth
for communication is limited to less than the theoretical

PCIe bandwidth. However, the MCL HPL model assumes
that the bandwidth of PCIe is fully dedicated to MPI com-
munication only, and there is no interaction between CPU
and GPUs. Due to these reasons, the MCL HPL model may
over estimates the performance than real cases for four
GPUs per node configurations.

•	 Second, the CPU controls parallel execution and synchro-
nization on each GPU and takes some time to control MPI
tasks. This may reduce the performance in real cases, but
not in the MCL HPL model.

In Figures 6 and 7, the test results exhibit similar behavior
to those shown in Figure 3 for small problems. Based on a
lack of microarchitectural details for the MCL HPL model,
the MCL HPL model yields gaps between estimations and
measurements, but for the maximum problem size, the differ-
ence converges to within a few percentage points.

6  |   CONCLUSIONS

In this work, a mathematical model for MCL HPL was pro-
posed, analyzed, modeled, and evaluated. Modern comput-
ing systems require more precise and accurate models for the
prediction of system performance because the microarchitec-
tures, system architectures, and network architectures of such
systems have changed rapidly over the past few decades.

Evaluations and experimental results demonstrated that
the proposed MCL HPL model produces reasonable esti-
mates of performance for real systems ranging from individ-
ual accelerators to large cluster systems. Based on its ability
to model multiple communication layers ranging from mem-
ory to hierarchical communication networks, the performance
differences between the model results and measured results
for the maximum problem size were significantly reduced
from 20.2% for the original HPL model to 4.1% for the pro-
posed MCL HPL model for a large cluster system, on average.

Like any numerical model, the proposed MCL HPL
model has some advantages and disadvantages. The errors
between the proposed MCL HPL model and real systems are
significantly reduced as a result of accurately modeling the
communication layers. The proposed MCL HPL model can
be applied to systems ranging from individual processors/
accelerators to large-scale clusters and can handle multiple
communication layers simultaneously. However, the pro-
posed MCL HPL model does not support microarchitectures
in detail and can introduce estimation gaps for small prob-
lems, compared to the maximum possible problem size. To
develop a more accurate model, concerns regarding the mi-
croarchitectural details of processors and accelerators, as well
as network topologies, should be considered in the future.

The experimental results for the proposed MCL HPL
model revealed the performance difference of 1.1% for

F I G U R E 6   Measured and simulated performance for test case A:
one-node multi-GPGPU (1, 2, 3, and 4) [Colour figure can be viewed
at wileyonlinelibrary.com]

0

2000

4000

6000

8000

10 000

12 000

14 000

16 000

18 000

0 10 000 20 000 30 000 40 000 50 000 60 000 70 000 80 000

Single node multiple P100 performance

Measured 1N1G Measured 1N2G Measured 1N3G Measured 1N4G
MCL HPL 1N1G MCL HPL 1N2G MCL HPL 1N3G MCL HPL 1N4G

Problem size (N)

GFLOPS

F I G U R E 7   Measured and simulated performance for test case B:
four-node multi-GPGPU (4, 8, and 12) [Colour figure can be viewed at
wileyonlinelibrary.com]

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

0 20 000 40 000 60 000 80 000 100 000 120 000 140 000 160 000

4-node multiple P100 performance

Measured 4N4G Measured 4N8G Measured 4N12G
MCL HPL 4N4G MCL HPL 4N8G MCL HPL 4N12G

Problem size (N)

GFLOPS

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com

536  |     KIM et al.

single-GPGPU case. Moreover, average absolute perfor-
mance differences of 5.5%, and 4.1% for a wide range of
models and problem sizes (GPGPU cluster, and well-known
large cluster systems, respectively). The proposed MCL HPL
model can simulate large cluster systems with thousands or
tens of thousands of nodes within a few seconds with a small
error range compared to the original HPL model. It can also
adopt future architectural changes in communication layers
easily, such as the microarchitectures of next-generation pro-
cessors, accelerators, and future network systems.

ACKNOWLEDGMENTS
We give special thanks to Hyungon Ryu and Simon See at
NVAITC and Wan Seo at NVIDIA for technical supports.

ORCID
Young Woo Kim https://orcid.org/0000-0002-3435-737X

REFERENCES
	 1.	 J. J. Dongarra and W. G. Stewart, LINPACK working note no 15:

LINPACK-a package for solving linear systems, no. ANL-82-30,
W-31-109-Eng-38, Springfield, VA, USA, 1982.

	 2.	 J. Dongarra, The LINPACK benchmark: An explanation in
Supercomputing, vol. 297, Springer, Berlin, Heidelberg, 1988, pp.
456-474.

	 3.	 J. J. Dongarra, L. Piotr, and P. Antoine, The LINPACK benchmark:
Past, present and future, University of Tennessee, Technical report,
2001, mimeo.

	 4.	 J. J. Dongarra and L. Julien, The problem with the linpack bench-
mark 1.0 matrix generator, Int. J. High Perfom. Comput. Appl. 23
(2009), 5–13.

	 5.	 TOP500 The List. Sept. 25, 2020, available at https://www.top500.
org/.

	 6.	 G. Quintana-Ortí, S. Xiaobai, and H. C. Bischof, A BLAS-3 ver-
sion of the QR factorization with column pivoting, SIAM J. Sci.
Comput. 19 (1998), 1486–1494.

	 7.	 Z. Wenli, J. Fan, and M. Chen, Efficient determination of block size
NB for parallel LINPACK test, in Proc. IASTED Int. Conf. Parallel
Distrib. Comput. Syst. (Las Vegas, NV, USA), Nov. 2004.

	 8.	 T. Nguyen and S. B. Baden, Lu factorization: Towards hiding com-
munication overheads with a lookahead-free algorithm, in Proc.
IEEE Int. Conf. Cluster Comput. (Chicago, IL, USA), Sept. 2015,
pp. 394–397.

	 9.	 T. Davies et al., High performance linpack benchmark: A fault
tolerant implementation without checkpointing, in Proc. Int. Conf.
Supercomput. (Tucson, AZ, USA), May 2011, pp. 162–171.

	10.	 M. Fatica, Accelerating linpack with CUDA on heterogenous clus-
ters, in Proc. Workshop GPGPU (Washington, DC, USA), Mar.
2009, pp. 46–51.

	11.	 E. Phillips and F. Massimiliano, A CUDA implementation of the
high performance conjugate gradient benchmark, in International
Workshop on PMBS, vol. 8966, Springer, Cham, Switzerland,
2014, pp. 68–84.

	12.	 D. Rohr, J. Cuveland, and V. Lindenstruth, A model for weak scal-
ing to many GPUs at the basis of the linpack benchmark, in Proc.
IEEE Int. Conf. Cluster Comput. (Taipei, Taiwan), Sept. 2016, pp.
192–202.

	13.	 R. David, K. Matthias Kretz, and B. Matthias, CALDGEMM and
HPL, Tech. Rep. Dec. 2010, Available at: http://code.compe​ng.uni-
frank​furt.de/attac​hment​s/10/techr​eport.pdf (2010). [last accessed
September 2020].

	14.	 R. Milan et al. D2.2: Report on the ExaNoDe architecture de-
sign guidelines, ExaNode. Tech. Rep. 2016, Available at: https://
exano​de.eu/wp-conte​nt/uploa​ds/2017/04/D2.2.pdf. [last accessed
September 2020].

	15.	 A. Kazi, D2.5: Report on the HPC application bottlenecks of
the state-of-the-art HPC platforms, ExaNode, Tech. Rep. 2016,
Available at: https://exano​de.eu/wp-conte​nt/uploa​ds/2017/04/%20
D2.5.pdf. [last accessed September 2020].

	16.	 C. Tom et al., Emulating high performance linpack on a commod-
ity server at the scale of a supercomputer, hal-01654804, 2017.

	17.	 D. Zivanovic et al., Main memory in HPC: do we need more or
could we live with less?, ACM Trans. Architect. Code Optim. 14
(2017), 1–26.

	18.	 Z. Jia et al., Dissecting the NVIDIA Volta GPU architecture via mi-
crobenchmarking, arXiv preprint, CoRR, 2018, arXiv:1804.06826
(2018).

	19.	 A. Goldhammer and A. Ayer Jr., Understanding performance of
PCI express systems, Xilinx WP350(v1.2), Sept. 4, 2014.

	20.	 J. Razzaq et al., Performance characterization of multiproces-
sors and accelerators using micro-benchmarks, Int. J. Adv. Syst.
Measure. 9 (2016), no. 1–2, 77–90.

	21.	 H. Nakamura et al., Thorough analysis of PCIe Gen3 communica-
tion, in Proc. Int. Conf. ReConFigurable Comput. FPGAs (Cancun,
Mexico), Dec. 2017, pp. 1–6.

	22.	 R. Neugebauer et al., Understanding PCIe performance for end
host networking, in Proc. 2018 Conf. ACM Special Interest Group
Data Commun. (Budapest, Hungary), Aug. 2018, pp. 327–341.

	23.	 A. Li et al., Evaluating modern GPU interconnect: PCIe, NVLink,
NV-SLI, NVSwitch and GPUDirect, IEEE Trans. Parallel Dist.
Syst. 31 (2019), no. 1, 94–110.

	24.	 A. Li et al., Tartan: Evaluating modern GPU interconnect via
a multi-GPU benchmark suite, in Proc. 2018 IEEE Int. Symp.
Workload Charact. (Raleigh, NC, USA), Sept. 2018, pp. 191–202.

	25.	 C. Pearson et al., Evaluating characteristics of CUDA communi-
cation primitives on high-bandwidth interconnects, in Proc. 2019
ACM/SPEC Int. Conf. Perform. (Mumbai, India), Eng. Apr. 2019,
pp. 209–218.

	26.	 Y. Ajima et al., The tofu interconnect D, in Proc. IEEE Int. Conf.
Cluster Comput. (Belfast, UK), Sept. 2018, pp. 646–654.

	27.	 S. Thomas, Network fabrics: Cray aries, Zuse Institute, Berlin,
2017, Sept. 25, 2020, available at https://suppo​rt.hlrn.de/twiki/​
pub/NewsC​enter/​ParPr​ogWor​kshop​Fall2​017/03_Netwo​rks_Cray_
Aries.pdf

	28.	 D. De Sensi, S. Di Girolamo, and T. Hoefler, Mitigating network
noise on dragonfly networks through application-aware routing,
in Proc. Int. Conf. High Perform. Comput., Netw., Stor. Analysis
(Denver, CO, USA), Nov. 2019, pp. 1–32.

	29.	 J. Louis, Networks for high-performance computing, Available
from: https://louis​jenki​nscs.github.io/surve​y/Netwo​rks_for_High-
Perfo​rmance_Compu​ting.pdf [last accessed September 2020].

	30.	 M. Sindi, HowTo–High Performance Linpack (HPL), Tech. Rep.
Center for Research Computing, University of Notre Dame, Jan.
2009.

	31.	 TechPowerUp, NVIDIA Tesla P100 PCIe 16 GB, Sept. 25,
2020, available at https://www.techp​owerup.com/gpu-specs/​tesla​
-p100-pcie-16-gb.c2888.

https://orcid.org/0000-0002-3435-737X
https://orcid.org/0000-0002-3435-737X
https://www.top500.org/
https://www.top500.org/
http://code.compeng.uni-frankfurt.de/attachments/10/techreport.pdf
http://code.compeng.uni-frankfurt.de/attachments/10/techreport.pdf
https://exanode.eu/wp-content/uploads/2017/04/D2.2.pdf
https://exanode.eu/wp-content/uploads/2017/04/D2.2.pdf
https://exanode.eu/wp-content/uploads/2017/04/ D2.5.pdf
https://exanode.eu/wp-content/uploads/2017/04/ D2.5.pdf
https://support.hlrn.de/twiki/pub/NewsCenter/ParProgWorkshopFall2017/03_Networks_Cray_Aries.pdf
https://support.hlrn.de/twiki/pub/NewsCenter/ParProgWorkshopFall2017/03_Networks_Cray_Aries.pdf
https://support.hlrn.de/twiki/pub/NewsCenter/ParProgWorkshopFall2017/03_Networks_Cray_Aries.pdf
https://louisjenkinscs.github.io/survey/Networks_for_High-Performance_Computing.pdf
https://louisjenkinscs.github.io/survey/Networks_for_High-Performance_Computing.pdf
https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888
https://www.techpowerup.com/gpu-specs/tesla-p100-pcie-16-gb.c2888

     |  537KIM et al.

	32.	 FUGAKU system, RIKEN, Japan, Sept. 25, 2020, available at
https://www.r-ccs.riken.jp/en/fugak​u/project.

	33.	 SUMMIT system, Oak Ridge National Laboratory, Oak Ridge,
Sept. 25, 2020, available at https://www.olcf.ornl.gov/olcf-resou​
rces/compu​te-syste​ms/summi​t/.

	34.	 Sierra system, Lawrence Livermore National Laboratory,
Livermore, Sept. 25, 2020, available at https://compu​ting.llnl.gov/
compu​ters/sierra.

	35.	 HPC5 system, Eni, Sept. 25, 2020, available at https://www.eni.
com/en-IT/opera​tions/​green​-data-cente​r-hpc5.html.

	36.	 SELENE system, NVIDIA, Santa Clara, CA, Sept. 25, 2020, avail-
able at https://blogs.nvidia.com/blog/2020/06/22/top50​0-isc-super​
compu​ting/.

	37.	 MARCONI100 system, CINECA, Bologna, Sept. 25, 2020, avail-
able at https://www.hpc.cineca.it/hardw​are/marco​ni100.

	38.	 PIZ DAINT system, CSCS, Sept. 25, 2020, available at https://
www.cscs.ch/compu​ters/piz-daint/.

	39.	 DGX SuperPOD, NVIDIA, Santa Clara, CA, Sept. 25, 2020, available
at https://devel​oper.nvidia.com/blog/dgx-super​pod-world​-recor​d-
super​compu​ting-enter​prise/.

	40.	 W. Feng, Analyzing MPI performance over 10-Gigabit Ethernet, J.
Parallel Distr. Comput. 65 (2005), 1253–1260.

	41.	 S. N. Kandadio and H. Xinghong, Performance of HPC
Applications over Infiniband, 10 Gb and 1 Gb Ethernet, IBM,
Armonk, NY, USA, 2007.

	42.	 HPC Advisory Council, Interconnect analysis: 10GigE and in-
finiband in high performance computing, HPC Advisory Council,
Tech. Rep. 2009.

	43.	 J. Vienne et al., Performance analysis and evaluation of infiniband
FDR and 40GigE RoCE on hpc and cloud computing systems, in
Proc. IEEE Symp. High-Perform. Interconnects (Santa Clara, CA,
USA), Aug. 2012, pp. 48–55.

AUTHOR BIOGRAPHIES

Young Woo Kim received his BS,
MS, and PhD in electronics engi-
neering from Korea University,
Seoul, Rep. of Korea, in 1994, 1996,
and 2001, respectively. He was an as-
sociate professor at University of
Science and Technology, Daejeon,

Rep. of Korea, from 2009 to 2019. In 2001, he joined
ETRI, Daejeon, Rep. of Korea. He has been researching
on high-performance computer system development. His
current research interests include high-speed networking
and supercomputing system architectures.

Myeong-Hoon Oh received his PhD
in information and communication
engineering from Gwangju Institute
for Science and Technology,
Gwangju, Rep. of Korea. In 2005, he
joined ETRI, Daejeon, Rep. of Korea.
He is a faculty member in Honam

University, Gwangju, Rep. of Korea. His current research
interest focuses on high-performance computing system
and high-speed fabric interconnection design. He has also
been an editor for cloud computing in ITU-T SG13 since
2012.

Chan Yeol Park received his BS in
Mathematics and MS and PhD in
Computer Science from Korea
University, Seoul, Rep. of Korea, in
1993, 1995, and 2000, respectively.
He joined Supercomputing Center,
Korea Institute of Science and

Technology Information as a principal researcher since
2002. His research focuses on high-performance comput-
ing architecture and parallel/distributed computing
algorithm.

https://www.r-ccs.riken.jp/en/fugaku/project
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://computing.llnl.gov/computers/sierra
https://computing.llnl.gov/computers/sierra
https://www.eni.com/en-IT/operations/green-data-center-hpc5.html
https://www.eni.com/en-IT/operations/green-data-center-hpc5.html
https://blogs.nvidia.com/blog/2020/06/22/top500-isc-supercomputing/
https://blogs.nvidia.com/blog/2020/06/22/top500-isc-supercomputing/
https://www.hpc.cineca.it/hardware/marconi100
https://www.cscs.ch/computers/piz-daint/
https://www.cscs.ch/computers/piz-daint/
https://developer.nvidia.com/blog/dgx-superpod-world-record-supercomputing-enterprise/
https://developer.nvidia.com/blog/dgx-superpod-world-record-supercomputing-enterprise/

