• Title/Summary/Keyword: Layer design

Search Result 3,599, Processing Time 0.028 seconds

Study on Design Optimization of a Planar Multi-layer Structure for Noise Reduction of Underwater Acoustic Sensors (수중음향센서의 소음차단을 위한 다층구조 설계 최적화에 대한 연구)

  • Kim, G.C.;Kim, S.H.;Kim, J.K.;Kil, H.G.;Hong, S.Y.;Song, J.H.;Gwon, H.W.;Seo, Y.S.;Jeon, J.J.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.317-328
    • /
    • 2013
  • In this paper, the optimization has been performed to design a multi-layer structure that is used as a structure for noise reduction of acoustic sonar sensors in underwater vehicles. Two design goals are considered to reduce self-noise from own machineries and to enhance acoustic signals detected from outside. Both distinct and continuous design parameters have been used such as selection of material properties of each layer and thickness of each layer, respectively. The sensitivity of design parameters has been analyzed and the evolutionary algorithm has been implemented for design optimization. For design optimization process, each of the design goals and the two combined design goals have been considered to analyze the achievement of those design goals.

Inter-layer Texture and Syntax Prediction for Scalable Video Coding

  • Lim, Woong;Choi, Hyomin;Nam, Junghak;Sim, Donggyu
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.6
    • /
    • pp.422-433
    • /
    • 2015
  • In this paper, we demonstrate inter-layer prediction tools for scalable video coders. The proposed scalable coder is designed to support not only spatial, quality and temporal scalabilities, but also view scalability. In addition, we propose quad-tree inter-layer prediction tools to improve coding efficiency at enhancement layers. The proposed inter-layer prediction tools generate texture prediction signal with exploiting texture, syntaxes, and residual information from a reference layer. Furthermore, the tools can be used with inter and intra prediction blocks within a large coding unit. The proposed framework guarantees the rate distortion performance for a base layer because it does not have any compulsion such as constraint intra prediction. According to experiments, the framework supports the spatial scalable functionality with about 18.6%, 18.5% and 25.2% overhead bits against to the single layer coding. The proposed inter-layer prediction tool in multi-loop decoding design framework enables to achieve coding gains of 14.0%, 5.1%, and 12.1% in BD-Bitrate at the enhancement layer, compared to a single layer HEVC for all-intra, low-delay, and random access cases, respectively. For the single-loop decoding design, the proposed quad-tree inter-layer prediction can achieve 14.0%, 3.7%, and 9.8% bit saving.

Analysis of Mechanical Characteristics of Polymer Sandwich Panels Containing Injection Molded and 3D Printed Pyramidal Kagome Cores

  • Yang, K.M.;Park, J.H.;Choi, T.G.;Hwang, J.S.;Yang, D.Y.;Lyu, M.-Y.
    • Elastomers and Composites
    • /
    • v.51 no.4
    • /
    • pp.275-279
    • /
    • 2016
  • Additive manufacturing or 3D printing is a new manufacturing process and its application is getting growth. However, the product qualities such as mechanical strength, dimensional accuracy, and surface quality are low compared with conventional manufacturing process such as molding and machining. In this study not only mechanical characteristics of polymer sandwich panel having three dimensional core layer but also mechanical characteristics of core layer itself were analyzed. The shape of three dimensional core layer was pyramidal kagome structure. This core layer was fabricated by two different methods, injection molding with PP resin and material jetting type 3D printing with acrylic photo curable resin. The material for face sheets in the polymer sandwich panel was PP. Maximum load, stiffness, and elongation at break were examined for core layers fabricated by two different methods and also assembled polymer sandwich panels. 3D printed core showed brittle behavior, but the brittleness decreased in polymer sandwich panel containing 3D printed core. The availability of 3D printed article for the three dimensional core layer of polymer sandwich panel was verified.

A Game Theoretic Cross-Layer Design for Resource Allocation in Heterogeneous OFDMA Networks

  • Zarakovitis, Charilaos C.;Nikolaros, Ilias G.;Ni, Qiang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.50-64
    • /
    • 2012
  • Quality of Service (QoS) and fairness considerations are undoubtedly essential parameters that need to be considered in the design of next generation scheduling algorithms. This work presents a novel game theoretic cross-layer design that offers optimal allocation of wireless resources to heterogeneous services in Orthogonal Frequency Division Multiple Access (OFDMA) networks. The method is based on the Axioms of the Symmetric Nash Bargaining Solution (S-NBS) concept used in cooperative game theory that provides Pareto optimality and symmetrically fair resource distribution. The proposed strategies are determined via convex optimization based on a new solution methodology and by the transformation of the subcarrier indexes by means of time-sharing. Simulation comparisons to relevant schemes in the literature show that the proposed design can be successfully employed to typify ideal resource allocation for next-generation broadband wireless systems by providing enhanced performance in terms of queuing delay, fairness provisions, QoS support, and power consumption, as well as a comparable total throughput.

  • PDF

OPTIMAL DESIGN OF THE MULTIPLAYER DAMPING MATERIALS USING EQUIVALENT MODELING

  • Hur, D.J.;Lee, D.C.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.189-194
    • /
    • 2004
  • The viscoelastic layer material is widely used to control the noise and vibration characteristics of the panel structure. This paper describes the design technology of the effective vibration damping treatment using the concept of the equivalent parameter of viscoelastic layer materials. Applying the equivalent parameter concepts based on theories of shell, it is possible to simulate the finite element analysis of damping layer panel treatments on the vibration characteristics of the structure. And it is achieved the reduced computational cost and the optimal design of topological distribution for the reduction of vibration effect.

Comparison of Mechanical Properties of Zirconia Copping by multi-layered zirconia blocks and Design locations (다층 지르코니아 블록 종류와 설계위치에 따른 지르코니아 코핑의 기계적 특성 비교)

  • Kang, Jae-Min;Kim, Won-Young;Chung, In-Sung;Jeon, Byung-Wook
    • Journal of Technologic Dentistry
    • /
    • v.41 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Purpose: This study was investigated the effect of multi-layer zirconia block type and design location on the mechanical properties of zirconia copings. Methods: Three kinds of multi-layered zirconia blocks (Snow princess multi layered block, Multi cherry, Dental zirconia pre-shaded blank) were used to identify the effects of the kinds of multi-layered zirconia blocks, design locations on mechanical characteristics of zirconia copings. 150 Zirconia copings were fabricated and fracture strength, hardness and microstructure were compared and evaluated. Results: Dental zirconia pre-shaded blank(2,256.9N) had the highest fracture strength of zirconia copings on all the design locations, and it was followed by Snow princess multi layered block(2,107.5N) and Multi cherry(917.0N). Snow princess multi layered block(1,949.7Hv) had the highest hardness of zirconia copings on all the design locations, and it was followed by Dental zirconia pre-shaded blank(1,671.7Hv) and Multi cherry(1,383.7Hv). The cervical layer had the highest fracture strength and hardness of zirconia copings in all the blocks, and it was followed by the cervical+gradation layer, the enamel layer, the enamel+gradation layer, and the gradation layer. Conclusion: It was found that the fracture strength and hardness were different according to the kinds of multilayer zirconia block and design location, and it was confirmed that it is lower than the fracture strength of white zirconia.

Optimal Design of a 2-Layer Fuzzy Controller using the Schema Co-Evolutionary Algorithm

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.3
    • /
    • pp.403-410
    • /
    • 2005
  • Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller. The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy controller and the schema co-evolutionary algorithm through the experiments.

A Study on the Optimum Design of Constrained layer for the Damping of Flexural Vibration (굽힘진동 감쇠를 위한 구속층의 최적설계에 관한 연구)

  • 김사수;이민우
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.95-101
    • /
    • 1997
  • A general method is presented for the analysis of the damping effectiveness of viscoelastic layer applied to elastic beam. The damping is attributed to the shear deformations of the treatment. Specific results are then given for sandwich beams with dissipative cores. The calculated results by this method are validated by comparison with the experimental results. Optimum design of a viscoelastic damping layer which is constrainedly cohered on a steel beam is discussed from the viewpoint of the modal loss factor. An object function is a loss factor of 3-layered beam and design variable is the thickness of constraining layer and viscoelastic layer. Optimum thickness can be obtained when 3-layered beam has a maximum loss factor.

  • PDF

Optimal Design of a 2-Layer Fuzzy Controller Using the Schema Co-Evolutionary Algorithm

  • Byun, Kwang-Sub;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.3
    • /
    • pp.341-346
    • /
    • 2004
  • Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller. The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy controller and the schema co-evolutionary algorithm through the experiments.

Flexural Design of Externally Bonded FRP Systems for Strengthening Concrete Structures (섬유판보강공법에서 휨설계식에 대한 연구)

  • 서정국;임종범;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.463-468
    • /
    • 2002
  • For the Externally bonded FRP systems, flexural design method is studied focusing on the reinforcement layer of the carbon fiber sheets. As the FRP layer is added, strengthening rate increases, but not proportionally as the FRP layer increases. This is reflected in the design formula appropriately by the bond cofficients from the added layers. As the number of FRP layer increases, the stress reinforcement and FRP sheet decreases, and it generally corresponds to the decrease rate of member flexural strength. This phenomenon is appearing indentically in a design formula and experimental result. The rate of $M_{test}$ and $M_n$ is 1.19 and it is estimated as safety factor which is the reduction factor, ${\psi}_f = 0.85$.

  • PDF