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Abstract

Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy
controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller.
The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the
schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary

algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy

controller and the schema co-evolutionary algorithm through the experiments.
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1. Introduction

Fuzzy systems have been used in robot behavior control for
many years and much attention has been devoted to their
improvement. Fuzzy systems use a method of approximate
reasoning, which allows them to make decisions based on
vague and incomplete information in a manner which is similar
to the way human beings operate. The reasons for use of the
fuzzy system to control robots are as follows. Firstly, it
provides robust control of the robot in a vague environment and
represents clearly the structure of the controller. Secondly, it is
reliable, because the degree of controllability is high and the
sensitivity to noise or variations in the parameters is low.
Finally, it is easy to apply to real situations [1]. Nowadays,
robots have become extremely complex with numerous
requirements. However, the total number of fuzzy rules and
adjustable system parameters increases exponentially with the
number of input variables in standard fuzzy reasoning
processes [2]. This imposes a heavy burden on the system,
from the view point of its control speed and cost. Because of
this, classical fuzzy systems cannot perform well the fuzzy
reasoning. Therefore, the 2-Layer fuzzy controller (2LFC) was
proposed, in order to solve this problem [1]. The 2LFC can
provide a good solution to this problem because it is capable of
dealing simultaneously with numerous inputs as well as

numerous outputs.
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The main problem in fuzzy control involves the design of
the fuzzy knowledge base. Various approaches to this problem
have been proposed, including trial and error, the Takagi-
Sugeno-Kang method, dynamic
programming, genetic algorithms and reinforcement learning

programming, gradient
[3]. In particular, evolutionary computation has received
considerable attention in recent years. In this paper, we use the
schema co-evolutionary algorithm (SCEA) for the design of the
fuzzy controller [4]. The SCEA works better than the SGA in
the case of complex and difficult problems. In contrast to
traditional single population-based evolutionary algorithms, the
SCEA in which two populations constantly interact and
cooperate with each other. is able to solve these problems more
reliably. Also it has a much better chance than the SGA of
finding global optima, because the parasite-population searches
the schema space.

In this study, we design 2LFC using the SCEA, and we apply
it to robot behavior control. Section 2 describes the process and
structure of the 2LFC and compares them with those of
multilevel fuzzy reasoning systems. In Section 3,we introduce
the SCEA and describe the role of the SCEA in the design of
the 2LFC. In Section 4, we verify the efficacy of the SCEA
through the simulation for fuzzy modeling, design the 2LFC by
the SCEA, and apply the designed 2LFC to a simple
application, which is a mcbile robot control. Finally, in Section
5, we present our concluding remarks.

2. 2-Layer Fuzzy Controller 2LFC)

2.1 Multilevel fuzzy reasoning systems and 2LFC

In the general fuzzy reasoning process, the total number of
fuzzy rules increases exponentially as the number of input
variables increases. Also, the total number of adjustable system
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parameters increases exponentially as the number of input
variables increases. These two perspectives are said to
constitute the dimensionality problem [5]. A general fuzzy
controller has difficulty controlling a robot with numerous
inputs and numerous behaviors. In order to solve these
problems, multilevel fuzzy relational systems and multi-layer
fuzzy logic controllers were proposed [2,5,6].

Chung and Duan classified hierarchical fuzzy systems into
three multistage structures, namely, incremental, aggregated
and cascaded [2]. Among them, the aggregated one is shown in
Fig. 1. For it, inputs are only allowed to pass to the first
reasoning stage consisting of a number of independent sub-
stages. The outputs form the first stage form the inputs to the
successive stage and such an arrangement can be extended for
more stages. In fact, the rationale behind aggregated structure is
similar to that of the classifier fusion design or mixtures of
experts pursued rigorously in recent years.

Level #1
X, '—» FRS Module

x 2
I Levast Y 1 Levet#2 4

st 2ol FRS Module FRS Module

then o
Level #1 il
X, '—=» FRS Module

Fig. 1. Aggregated structure of the multilevel fuzzy
relational systems.

Similarly, the 2LFC can provide a robust control and
requires only a limited number of rules in order to handle many
input variables [1]. Fig. 2 shows the structure of the 2LFC, in
which there are four sub-controllers in the first layer and two
combined controllers in the second layer. In the first layer, the
various inputs are classified into four types and inputted to the
sub-controllers. The sub-fuzzy controllers in the first layer
perform fuzzy reasoning independently using the proper fuzzy
reasoning system. Then, the second layer uses the outputs of
the sub-controllers contained in the first layer as the inputs to
the combined controllers. At this time, the combined
controllers select the required outputs from the first layer as the
final outputs with different types. The combined fuzzy
controllers in the second layer perform combined fuzzy
reasoning. These combined controllers are inclusively used for
the purpose of producing the final outputs. Through this
process, the 2LFC can perform fuzzy reasoning with numerous
inputs and produce numerous outputs.

As shown in Fig. 2, 2LFC is similar to the aggregated
structure of a muitilevel fuzzy relational system. Also, it is
similar to the shape of a neural network. However, 2LFC has
three differences.
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Fig. 2. The structure of the 2L.FC; this example has 4 sub-
controllers and 2 combined controllers.

Firstly, 2LFC has a specialized structure which differs from
the aggregated structure of a multilevel fuzzy system. The
2LFC limits the fuzzy reasoning to 2 levels, i.e. 2-layer
reasoning. Fuzzy control has been successfully applied to many
industrial plants that are mostly nonlinear systems. Generally
speaking, in most industrial applications, the stability of control
is not fully guaranteed and the reliability of a control system is
considered to be more important than the stability [7]. In case
of a multilevel fuzzy system, because consecutive nonlinear
systems make a longer nonlinear system, it is hard to be aware
of the structure of the whole system. So, it is difficult to rely on
the system. On the other hand, by limiting the fuzzy reasoning
to 2 levels, 2LFC can present the structure better than the
multilevel system. Therefore, 2LFC can guarantee the
reliability of a whole system.

Second, the 2LFC has more than two stages in the final level
to which the final output is connected. Nowadays, the
objectives to be controlled are very complex and varied.
Therefore, the systems designed to meet these objectives have
not only a number and variety of inputs, but also a number and
variety of outputs. The multilevel fuzzy system can deal with
numerous inputs but only a limited number of outputs. Because
the 2LFC has more than two stages in the final level, it can deal
with numerous inputs as well as numerous outputs. It is similar
to the layered structure of an artificial neural network.

Finally, the 2LFC has a fuzzy controller in each stage
module; this module is similar to a node in a neural network.
Also, the 2LFC has no weights. In this case, the 2LFC bears no
similarity to a neural network.

2.2 2LFC for robot behavior control

The basic function of the robot is to avoid obstacles. In the
system of Fig. 2, combined controller#1 is responsible for this
behavior. One piece of information required for the avoidance
of obstacles is the moving direction of the robot. This requires
the outputs of the distance sub-controllers and the inputs of the
combined controller#1 which are outyy, out|5, and ouf;; .
Also, we define the moving of the robot to an objective point as
an advanced behavior. So, combined controller#2 generates this
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behavior and therefore needs the position of the objective point.
It needs the information which will enable the robot to attain
the objective point, that is, the direction and the distance to the
objective point, and the inputs of the combined controller#2
which are out,, and outy, . The front sub-controller
generates the distance from the robot to the objective point and
the vision sub-controller generates the direction toward the
objective point.

Each module has a different fuzzy reasoning system. In this
application, a zero-order Sugeno fuzzy model can be used as
the fuzzy inference engine [8]. The reason is that the output
from the controller is a constant term, which is the direction of
the movement for the robot, and a defuzzier is therefore not
needed. In this paper, the user indicates which combined
controller is activated. Two outputs will be automatically
selected or mixed in the future work. Also the number of
modules and the connection of them are intuitively determined
by a human designer according to the number and the type of
inputs and desired outputs. It is easy to solve this problem,
because the fuzzy rule in each module is considered to be more
important than their connection or the number of modules. In
this application, the vision sub-controllerf#4 has | input and the
combined controller#2 has 2 inputs. The reason why the other
controllers have always 3 inputs is that the number of the same
type inputs is 9 and the number of the sub controllers for this is
3. As another example, if the number of inputs is 5, two sub
controllers have 2 and 3 inputs respectively, and combined
controller#1 has 2 inputs.

3. Design of 2LFC using SCEA

3.1 Process of the SCEA

In order to find a good fuzzy controller, in this paper, we use
the SCEA. The fundamental process of the SCEA was
proposed in [4]. Like the other co-evolutionary algorithms, the
SCEA has two different, but
populations: a host-population and a parasite-population. The

cooperatively working

former is made up of candidates of the solution and works in
approximately the same way as a conventional genetic
algorithm. The latter is a set of schemata, which is used to find
useful schemata called “Building Blocks” [9,10]. Fig. 3 shows
an overview of the SCEA [4].
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Fig. 3. Overview of the SCEA.

The SGA has four major steps for one generation, which are
evaluation, selection, crossover, and mutation. The SCEA,
however, has an additional step, parasitizing, which is
performed before the selection process. Once all of the strings
in the host-population are evaluated, some of them are
randomly selected for each schema of the parasite-population
and then parasitized by the corresponding schema. This allows
the strings newly generated during the parasitizing process to
be evaluated and their fitness improvement between the
original string and the parasitized one to be measured. The
parasitized string having the largest improvement value
replaces the corresponding string in each schema. Using the
amount of improvement, the fitness of each schema in the
parasite-population can be evaluated. Therefore, the fitness of
the each schema in the parasite-population provides a measure
of the usefulness of the schema.

The SCEA applies tie same process to the parasite-
population after fitness assignment as the SGA does. The
fitness of an individual in the parasite-population is calculated
by the parasitizing process. Thus, treating the parasite-
population takes four steps, i.e. parasitizing, selection,
crossover and mutation. T1e parasitizing process was explained
in detail in [4].

3.2 Parameters of 2LFC

In order to use the SCEA to design the 2LFC, we simplify
the behavior of the robo:. In Fig. 2, only the avoidance of
obstacles is dealt with. Thus, the 2LFC consists of sub-
controller#1, #2 and #3, and the combined controller for
behavior#1. Following paragraph explains one of each fuzzy
controller.

Generally, fuzzy reasoring methods are quite varied. They
are classified into three types: the direct method, indirect
method and hybrid method. We use the zero-order Sugeno
fuzzy model of fuzzy reasoning [8]. The advantage of this
model is that it includes a defuzzifier in the inference engine.
Also, the main feature of this method is that the parameter of
consequent is given by a constant term. The value of inference
is obtained from following (1). In this expression, A,
represents the fitness that is obtained from the 7, fuzzy rule,
¢, represents the constant value of consequent in the 7, fuzzy
rule and Z represents the final value of the output of the
fuzzy inference.

S (hxe)
Z=2r
24
i=0

Making use of the above expression, the final value is

¢y

obtained directly from the output of the fuzzy inference engine.
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Each fuzzy controller has 27 fuzzy rules in this application,
because the number of inputs is 3 and the number of
membership function in the antecedent is 3 in each fuzzy
controller (27 =3%). In general, the number of fuzzy rules is
determined according to the number of inputs(=the number of
linguistic variables in the antecedent) and the number of
linguistic term. For example, assume the fuzzy rule has a
following form.

if Xj is 4, and X, is A4, and X3 is 43 then Y
is ¢
where, X =(X;, X,, X3), which are the inputs of the
controller, and Y are linguistic variables and (4, 4;, 43)
and ¢ their respective linguistic values. Especially
(4, Ay, 43) are general membership functions and ¢ is a
fuzzy singleton in the zero-order Sugeno fuzzy model. The
membership functions and the fuzzy singleton, ¢, which are
used in this application are depicted in Fig. 4. Thus, the
membership function 4; has three linguistic terms such as
small, medium, and large. The number of fuzzy rules is
determined by the inputs power of the linguistic terms
( #Rules =# LinquisticValues™™* ). Therefore, since each
fuzzy controller in our application has 3 inputs and 3 linguistic
terms(small, medium, and large), the number of fuzzy rules is
27.

The basic rule for the behavior of a mobile robot has the

form:

if Front Distance is Large and Left Distance is Small and
Right Distance is Large then Steering is NL....

A fuzzy controller with such membership functions, as in the
case of the one shown in Fig. 4(a), needs eight points: mI~m8.
If these points are determined, the three membership functions
of a trapezoidal form can be determined, as shown in Fig. 4(a).
Also, a fuzzy controller with such a constant, such as the one
shown in Fig. 4(b), needs 7 points: NL, NM, NS, ZE, PS, PM,
and PL. It should be mentioned that ZE represents a zero offset
and ZE is fixed to the zero value. Therefore, if six points are
determined, then the fuzzy singletons for the consequents of the
fuzzy rules are determined.

ml m4 ms m& NM ZE PM
1 (A
0m3 m2 m7 mé NL NS 0 PS PL
(@ (b)

Fig. 4. Linguistic variables in the surface structure (a)
membership functions to be calibrated (b) fuzzy singletons to
be calibrated.

3.3 Applying the SCEA to the design of 2LFC

The individual in evolutionary algorithm represents not a
fuzzy rule but the parameters of membership function and
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fuzzy singletons, as shown in Fig. 4. The surface structure of
fuzzy rules is initially defined by a human designer. The deep
structure, where the shape of membership functions and the
value of fuzzy singletons are designed, is determined by a
fuzzy modeling method, that is the SCEA in our paper [3].

Therefore, the individual of the host-population is composed
of 14 parameters which represent the shape of membership
functions and the value of fuzzy singletons. The number of
parameters in the membership functions of the antecedents is 8
and that of the consequents is 6. One parameter needs 6 bits in
the form of a string. So, a fuzzy rule needs a total of 84 bits,
where this refers to the length of the required string. Fig. 5
shows such a string.

I mi | m2 ] Tms—[ NL INM rPL—I

6ous | 6bis | .. | ebis

G bits l 6 bits | I 6 bits

+—————————— 48 birs i 36 birs |

84 bits

Fig. 5. The string used in the host-population.

If the above parameters are determined, the deep structure of
the fuzzy rules can be determined. Finally, the entire fuzzy
controller is designed automatically. With the string in Fig. 5 as
the host-population, the SCEA is performed. The main
controller in the 2LFC is the combined controller. The reason
for this is that it performs a combinative inference. So, the
SCEA is performed according to the following steps.

Step 1: In the 2LFC, the combined controller is more important
than the sub-controllers. First of all, the SCEA designs
the combined controller with 3 inputs.

Step 2: After adding a left sub-controiler with 3 inputs, the
SCEA designs this sub-controller.

Step 3: After adding a right sub-controller with 3 inputs, this
sub-controller is designed.

Step 4. After adding a front sub-controller with 3 inputs, this
sub-controller is designed by the SCEA.

The evaluation part of the SCEA process differs according to
the problem being investigated. The SCEA evaluates the
individuals using the result of the robot behavior. The robot
moves according to an angle of the wheel (the output Z of
fuzzy system, which is revised by the SCEA). The evaluation
for the mobile robot control is described below. It is supposed
that the mobile robot has a manipulator to perform a certain
task. The minimum length of the manipulator, excluding the
radius of the mobile robot, is 5cm. Thus, the mobile robot

needs a minimum distance of 5cm between itself and an object.

The robot has to position itself more than 5cm from the wall, in
order to protect itself and its manipulator. This is reflected in
the evaluation. Also, the robot must not collide with any
obstacles, otherwise its fitness will be assigned a value of zero.
If the robot successfully moves to the objective point, it is
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assigned high fitness. Among several such robots, the one that
arrives the most rapidly at the objective point is assigned the
highest fitness. The fitness function that reflects the above
conditions has the following form (2).

_| pos 1 - near 15
f*[ 11 )x[ 50 )X(ﬁme) @

The distance that the robot moves is divided into 11 sectors
(posO~posil). posO represents the starting point and posil
represents the objective point. If the robot collides with anything,
it is assigned a fitness value of zero. The closer the robot moves

to the wall, the lower the fitness. The variable, near, represents
the closeness of the robot to the wall, with the number of
correspondence to a distance of Scm from the wall and the
maximum number of closeness being 50. The time variable
represents the elapsed time corresponding to the movement of the
robot from pos0 to posl 1, and 15 is the minimum elapsed time in
the case of this simulation. Consequently, the highest fitness
value is given to the robot that moves the most rapidly to the
objective point without experiencing any collisions and without
coming Scm of any obstacles.

To summarize, the SCEA evolves the population that has
many individuals. The change of the individuals represents the
change of 14 parameters. As the result, the deep structure of
fuzzy rules is changed and then the changed output Z of
fuzzy controller is produced with the sensor inputs. The result
of the robot behavior is reflected to the fitness function and the
individual gets the fitness in evaluation process of the SCEA.

4. Experiments and results

4.1 Design of the 2LFC by the SCEA

Fig. 6(a) shows the fitness change of the host-population
obtained with the SCEA and Fig. 6(b) shows the number of
schema that the parasitizing process provides to the host-
population. While the fitness of the host-population is low,
many schemata are provided by the parasitizing process, as
shown in Fig. 6. Although the fitness of the host-population is
high, some schemata are provided.
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Fig. 6. The result of the SCEA - fitness change (a) The upper
line represents the best fitness and the lower line represents the
average fitness of the host-population. (b) The schema provided

by the parasitizing process.
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Fig. 7. The results for the SCEA - some of the best solutions:
membership functions and fuzzy singletons (a) combined
controller (b) left controller (¢) right controller (d) front
controller.

Based on the results ottained from the SCEA, Fig. 7 shows
some of the best solutions that are decoded from the individual
with the best fitness. Membership functions with a cross shape
are generated because we leave completely free our parameters
by the SCEA. They are directly decoded to the fuzzy
membership functions by general computer processing. The
mobile robot moves using the 2LFC with these fuzzy rules. The
simulation of the mobile robot's behavior is successfully
petformed using these fuzzy rules. The robot moves rapidly to
the objective point without colliding with any obstacles and
without coming closer than 5cm to any of the obstacles. The
elapsed time from the starting point to the objective point was
5,156msec.

4.2 Experiments on the mobile robot

After applying the 2LFC, that was designed by means of the
above simulation, to tie mobile robot, we performed
experiments to test the avcidance of obstacles. Fig. 8 shows the
experiment involving the avoidance of obstacles. As shown in
these pictures, the robot moved in such a way as to avoid the
obstacles, while following the wall. This corresponds to the
result from the optimized controller determined by the SCEA.

Also, the robot with the color detector successfully followed
another robot. Fig. 9 shows pictures of the experiment in which
one robot followed another robot. The robot in front moves
using a 2LFC and the robot in the rear follows using a 2LFC
and color detector.
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Fig. 9. The experiment on robot following.

5. Conclusions

in this paper, we introduced the 2-layer fuzzy controller,
whose purpose was to control the mobile robot, and we verified
the efficacy of the 2LFC through simulations and experiments.
Based on the results, it was concluded that the 2LFC can deal
with various kinds of inputs (distance and vision in this study),
as well as various kinds of output (avoidance of obstacles and
robot following). In other words, the 2LFC can provide a
robust control using only a small number of fuzzy rules. For the
design of the 2LFC, the schema co-evolutionary algorithm was
used. The SCEA works better than the SGA when faced with
complex and difficult problems. We verified the efficacy of the
SCEA, in terms of the design of the fuzzy controller, by
comparing it with the SGA. Finally, we performed an
experiment in which the robot with the 2LFC, which was
designed by the SCEA, moved with various behaviors.

In this study, we demonstrated the performance of the 2LFC
only through a simulation and some experiments. Therefore,
the future work is the mathematical analysis of the 2LFC and
the application to various sectors. After that, we hope that the
2LFC and the SCEA will be utilized in various, complex and
difficult problems.
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