• Title/Summary/Keyword: Layer Removal Technique

Search Result 60, Processing Time 0.027 seconds

Planarization & Polishing of single crystal Si layer by Chemical Mechanical Polishing (화학적 기계 연마(CMP)에 의한 단결정 실리콘 층의 평탄 경면화에 관한 연구)

  • 이재춘;홍진균;유학도
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.361-367
    • /
    • 2001
  • Recently, Chemical Mechanical Polishing(CMP) has become a leading planarization technique as a method for silicon wafer planarization that can meet the more stringent lithographic requirement of planarity for the future submicron device manufacturing. The SOI(Silicon On Insulator) wafer has received considerable attention as bulk-alternative wafer to improve the performance of semiconductor devices. In this paper, the objective of study is to investigate Material Removal Rate(MRR) and surface micro-roughness effects of slurry and pad in the CMP process. When particle size of slurry is increased, Material Removal rate increase. Surface micro-roughness is greater influenced by pad than by particle size of slurry. As a result of AM measurement, surface micro-roughness was improved from 27 $\AA$ Rms to 0.64 $\AA$Rms.

  • PDF

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • v.32 no.3
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

Fabrication of metal nano-wires using carbon nanotube masks

  • Yun, W.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.175-175
    • /
    • 1999
  • Circumventing problems lying in the conventional lithographic techniques, we devised a new method for the fabrication of nanometer scale metal wires inspired by the unique characteristics of carbon nanotubes (CNTs). Since carbon nanotubes could act as masks when CNT-coated thin Au/Ti layer on a SiO2 surface was physically etched by low energy argon ion bombardment 9ion milling), Au/Ti nano-wires were successfully formed just below the CNTs exactly duplicating their lateral shapes. Cross-sectional analysis by transmission electron microscopy revealed that the edge of the metal wire was very sharply developed indicating the great difference in the milling rates between the CNTs and the metal layer as well as the good directionality of the ion milling. We could easily find a few nanometer-wide Au/Ti wires among the wires of various width. After the formation of nano-wires, the CNTs could be pushed away from the metal nano-wire by atomic force microscopy, The lateral force for the removal of the CNTs are dependent upon the width and shape of the wires. Resistance of the metal nano-wires without the CNTs was also measured through the micro-contacts definted by electron beam lithography. since this CNT-based lithographic technique is, in principle, applicable to any kinds of materials, it can be very useful in exploring the fields of nano-science and technology, especially when it is combines with the CNT manipulation techniques.

  • PDF

Development of Auto-Control Power Supply of ELID Electrolysis Speed for Metal-Bonded Grinding Wheel (금속결합제 연삭 숫돌의 ELID 전해속도 자동 조절장치 개발)

  • Shin, Gun-Hwi;Kwak, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.899-904
    • /
    • 2016
  • ELID grinding is an excellent technique for the mirror grinding of the variety of the advanced metallic or nonmetallic materials. The focus of this study is the development of an automatic-control electrolysis-speed device for the automation of the ELID-grinding process. For the development of the automatic-control electrolysis-speed device, analysis experiments regarding the ELID cycle and oxide-layer removal and creation were conducted according to a truing and dressing process. Also, a comparative experiment was conducted to confirm the variance of the electrolysis speed in accordance with changes of the voltage. The experiment results for the developed automatic-control electrolysis-speed device show that the developed device could control the electrolysis speed according to voltage changes through the use of the data that are monitored during the ELID-grinding process.

Nanoprobe-based Mechano-Chemical Scanning Probe Lithography Technology (나노프로브 응용 기계-화학적 나노리소그래피 기술)

  • Sung, In-Ha;Kim, Dae-Eun;Shin, Bo-Sung
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1043-1047
    • /
    • 2003
  • With the advancement of micro-systems and nanotechnology, the need for ultra-precision fabrication techniques has been steadily increasing. In this paper, a novel nano-structure fabrication process that is based on the fundamental understanding of nano-scale tribological interaction is introduced. The process, which is called Mechano-Chemical Scanning Probe Lithography (MC-SPL), has two steps, namely, mechanical scribing for the removal of a resist layer and selective chemical etching on the scribed regions. Organic monolayers are used as a resist material, since it is essential for the resist to be as thin as possible in order to fabricate more precise patterns and surface structures. The results show that high resolution patterns with sub-micrometer scale width can be fabricated on both silicon and various metal surfaces by using this technique.

  • PDF

Fabrication of the 20{\mu}m$-height Polyimide Microstructure Using $O_2$ RIE Process ($O_2$ RIE 공정을 이용한 20{\mu}m$ 두께의 폴리이미드 마이크로 구조물의 제작)

  • Baek, Chang-Wook;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.600-602
    • /
    • 1995
  • Using the $O_2$ RIE process, 20{\mu}m$-height polyimide microstructures are fabricated. In LIGA-like process, metal microstructure can be formed by the electroplating using these polyimide microstructures as a plating mould. Reactive ion Etching technique using oxygen gas is used for the patterning of polyimide. The etching rate of the polyimide is increased with increased pressure and RF power. The anisotropic vertical sidewall can be obtained at low pressure, but the etched surface state is not so good yet. "Micrograss", which is formed during the RIE and disturbs uniform electroplating, can be removed effectively by the wet itching of the chromium sacrificial layer. More studies about the improvement of an etched surface state and the removal of microsgrass are needed.

  • PDF

Effect of Heat Treatment Conditions and Densities on Residual Stresses at Hybrid (FLN2-4405) P/M Steels

  • Kafkas, Firat;Karatas, Cetin;Saritas, Suleyman
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.566-567
    • /
    • 2006
  • The characteristics of residual stresses occurring in PM steel based nickel (FLN2-4405) was investigated. The measurements of residual stresses were carried out by electrochemical layer removal technique. The values and distributions of residual stresses occurring in PM steel processed under various densities and heat treatment conditions were determined. In most of the experiments, tensile residual stresses were recorded in surface of samples. The residual stress distribution on the surface of the PM steels is affected by the heat treatment conditions and density. Maximum values of residual stresses on the surface were observed sinter hardened condition and $7.4\;g/cm^3$ density. Minimum level of recorded tensile residual stresses are150 MPa and its maximum level is 370 MPa.

  • PDF

Thermal Atomic Layer Etching of the Thin Films: A Review (열 원자층 식각법을 이용한 박막 재료 식각 연구)

  • Hyeonhui Jo;Seo Hyun Lee;Eun Seo Youn;Ji Eun Seo;Jin Woo Lee;Dong Hoon Han;Seo Ah Nam;Jeong Hwan Han
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.53-64
    • /
    • 2023
  • Atomic layer etching (ALE) is a promising technique with atomic-level thickness controllability and high selectivity based on self-limiting surface reactions. ALE is performed by sequential exposure of the film surface to reactants, which results in surface modification and release of volatile species. Among the various ALE methods, thermal ALE involves a thermally activated reaction by employing gas species to release the modified surface without using energetic species, such as accelerated ions and neutral beams. In this study, the basic principle and surface reaction mechanisms of thermal ALE?processes, including "fluorination-ligand exchange reaction", "conversion-etch reaction", "conversion-fluorination reaction", "oxidation-fluorination reaction", "oxidation-ligand exchange reaction", and "oxidation-conversion-fluorination reaction" are described. In addition, the reported thermal ALE processes for the removal of various oxides, metals, and nitrides are presented.

Gyroscope Signal Denoising of Ship's Autopilot using Kalman Filter and Multi-Layer Perceptron (칼만필터와 다층퍼셉트론을 이용한 선박 오토파일럿의 자이로스코프 신호 잡음제거)

  • Kim, Min-Kyu;Kim, Jong-Hwa;Yang, Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.809-818
    • /
    • 2019
  • Since January 1, 2020, the International Maritime Organization (IMO) has put in place strong regulations to reduce air pollution caused by ships by lowing the upper limit of ship fuel oil sulfur content from 3.5% to 0.5% for ships passing through all sea areas around the world. Although it is important to reduce air pollutants by using fuel oil with low sulfur content, reducing the amount of energy waste through the economic operation of a ship can also help reduce air pollutants. Ships can follow designated routes accurately even under the influence of noise using autopilot systems. However, regardless of their quality, the performance of these systems is af ected by noise; heading angles with added measurement noise from the gyroscope are input into the autopilot system and degrade its performance. A technique to solve these problems reduces noise effects through the application of a Kalman filter, which is widely used in condition estimation. This method, however, cannot completely eliminate the effects of noise. Therefore, to further improve noise removal performances, in this study we propose a better denoising method than the Kalman filter technique by applying a multi-layer perceptron (MLP) in forward direction motion and a Kalman Filter in rotation motion. Simulations show that the proposed method improves forward direction motion by preventing the malfunction of a rudder more so than merely using a Kalman Filter.

Removal of Volatile Organic Contaminant(toluene) from Specific Depth in Aquifer Using Selective Surfactant-Enhanced Air Sparging (계면활성제와 폭기를 이용한 대수층의 특정깊이에 존재히는 휘발성 유기오염물질 (톨루엔)의 휘발제거)

  • Song, Young-Su;Kwon, Han-Joon;Yang, Su-Kyeong;Kim, Heon-Ki
    • Economic and Environmental Geology
    • /
    • v.43 no.6
    • /
    • pp.565-571
    • /
    • 2010
  • An innovative application of surfactant-enhanced air sparging(SEAS) technique was developed in this study. Using a laboratory-scale physical model packed with water-saturated sand, air sparging was implemented to remove water-dissolved toluene that was introduced into a specific depth of the system with finite vertical width prior to sparging. An anionic surfactant(Sodium dodecylbenzene sulfonate) was introduced into the contaminated layer as in dissolved form in the toluene-contaminated solution for SEAS, whereas no surfactant was applied in the control experiment. Due to the suppressed surface tension of water in the surfactant(and toluene)-containing region, the toluene removal rate increased significantly compared to those without surfactant. More than 70% of the dissolved toluene was removed from the contaminated layer for SEAS application while less than 20% of toluene was removed for the experiment without surfactant. Air intrusion into the contaminated layer during sparging was found to be more effective than that without surfactant, enhancing air contact with toluene-contaminated water, which resulted in improved volatilization of contaminant. This new method is expected to open a new option for remediation of VOC(volatile organic compound)-contaminated aquifer.