Removal of Volatile Organic Contaminant(toluene) from Specific Depth in Aquifer Using Selective Surfactant-Enhanced Air Sparging

계면활성제와 폭기를 이용한 대수층의 특정깊이에 존재히는 휘발성 유기오염물질 (톨루엔)의 휘발제거

  • Song, Young-Su (Dept. of Environmental Sciences and Biotechnology, Hallym University, Institute of Energy and Environment, Hallym University) ;
  • Kwon, Han-Joon (Dept. of Environmental Sciences and Biotechnology, Hallym University, Institute of Energy and Environment, Hallym University) ;
  • Yang, Su-Kyeong (Dept. of Environmental Sciences and Biotechnology, Hallym University, Institute of Energy and Environment, Hallym University) ;
  • Kim, Heon-Ki (Dept. of Environmental Sciences and Biotechnology, Hallym University, Institute of Energy and Environment, Hallym University)
  • 송영수 (한림대학교 환경생명공학과, 한림대학교 에너지.환경 연구소) ;
  • 권한준 (한림대학교 환경생명공학과, 한림대학교 에너지.환경 연구소) ;
  • 양수경 (한림대학교 환경생명공학과, 한림대학교 에너지.환경 연구소) ;
  • 김헌기 (한림대학교 환경생명공학과, 한림대학교 에너지.환경 연구소)
  • Received : 2010.08.22
  • Accepted : 2010.12.06
  • Published : 2010.12.28

Abstract

An innovative application of surfactant-enhanced air sparging(SEAS) technique was developed in this study. Using a laboratory-scale physical model packed with water-saturated sand, air sparging was implemented to remove water-dissolved toluene that was introduced into a specific depth of the system with finite vertical width prior to sparging. An anionic surfactant(Sodium dodecylbenzene sulfonate) was introduced into the contaminated layer as in dissolved form in the toluene-contaminated solution for SEAS, whereas no surfactant was applied in the control experiment. Due to the suppressed surface tension of water in the surfactant(and toluene)-containing region, the toluene removal rate increased significantly compared to those without surfactant. More than 70% of the dissolved toluene was removed from the contaminated layer for SEAS application while less than 20% of toluene was removed for the experiment without surfactant. Air intrusion into the contaminated layer during sparging was found to be more effective than that without surfactant, enhancing air contact with toluene-contaminated water, which resulted in improved volatilization of contaminant. This new method is expected to open a new option for remediation of VOC(volatile organic compound)-contaminated aquifer.

계면활성제를 이용하여 대수층의 특정층에 존재하는 휘발성 오염물질을 선택적으로 제거할 수 있는 새로운 지하수 폭기기술을 개발하였다. 모래가 충진된 실험설 규모의 물리적 모델을 이용하여 이 폭기기술의 효율성을 검증하였다. 모델의 특정깊이(바닥으로부터 약 22 cm)에 일정한 두께로 존재하는 용해된 상태의 톨루엔 플룸을 제거하는 실험을 실시하였으며, 오염물질이 존재하는 영역의 표면장력을 저감하기 위하여 음이온계 계면활성제인 SDBS(Sodium dodecylbenzene sulfonate)를 주입하였다. 또한 비교를 위하여 동일한 조건에서 계면활성제가 주입되지 않은 실험도 실시하였다. 오염영역의 하부로부터 공기로서 폭기한 결과, 계면활성제에 의하여 저감된 표면장력의 효과에 의하여 오염영역에 대한 폭기영향권의 크기가 현저히 증가하였으며 그 결과 70%이상의 톨루엔이 제거되었다. 반면 계면활성제가 주입되지 않은 조건에서는 20%이하의 톨루엔만 제거되었다. 이는 계면활성제에 의하여 표면장력이 낮아져 폭기 과정에서 플룸에 대한 공기주입이 매우 효율적으로 이루어졌으며, 따라서 톨루엔을 포함하는 대수층의 지하수가 공기와의 접촉이 보다 용이해졌음을 의미한다. 이 새로운 방법은 휘발성 유기물질로 오염된 대수층을 복원하는데 유용하게 이용될 수 있을 것으로 기대된다.

Keywords

References

  1. Adams, J.A. and Reddy, K.R. (2000) Removal of dissolved- and free-phase benzene pools from ground water using in situ air sparging. J. Envir. Engrg. v.126, p.697-707. https://doi.org/10.1061/(ASCE)0733-9372(2000)126:8(697)
  2. Braida, W.J. and Ong, S.K. (1998) Air sparging: Air-water mass transfer coefficients. Water Resour. Res. v. 34, p. 3245-3253. https://doi.org/10.1029/98WR02533
  3. Brooks, R.H. and Corey, A.T. (1966) Properties of porous media affecting fluid flow. J. Irrig. Drain. v. 92, p. 61-68.
  4. Johnson, R.L., Johnson, P.C., McWhorter, D.B., Hinchee, R.E. and Goodman, I. (1993) An overview of in situ air sparging. Ground Water Monit. Rev. v.13, p.127-135. https://doi.org/10.1111/j.1745-6592.1993.tb00456.x
  5. Johnston, C.D., Rayner, J.L. and Briegel, D. (2002) Effectiveness of in situ air sparging for removing NAPL gasoline from a sandy aquifer near Perth, Western Australia. J. Contam. Hydrol. v.59, p.87-111. https://doi.org/10.1016/S0169-7722(02)00077-3
  6. Kim, H. and Annable, M.D. (2006a) Effect of surface reduction on VOC removal during surfactant-enhanced air sparging. J. Environ. Sci. Health Part A. v.41, p.2799-2811. https://doi.org/10.1080/10934520600966946
  7. Kim, H., Choi, K.-M., Moon, J.-W. and Annable, M.D. (2006b) Changes in air saturation and air-water interfacial area during surfacatant-enhanced air sparging in saturated sand. J. Conatam. Hydrol. v.88, p.23-35. https://doi.org/10.1016/j.jconhyd.2006.05.009
  8. Kim, H., Soh, H.-E., Annable, M.D. and Kim, D.-J. (2004) Surfactant-enhanced air sparging in saturated sand. Environ. Sci. Technol. v.38, p.1170-1175. https://doi.org/10.1021/es030547o
  9. Lundegard, P.D. and LaBrecque, D. (1995) Air sparging in a sandy aquifer (Florence, Oregon, USA): Actual and apparent radius of influence. J. Contam. Hydrol. v.19, p.1-27. https://doi.org/10.1016/0169-7722(95)00010-S
  10. Marley, M.C., Hazebrouck, D.J. and Walch, M.T. (1992) The application of in situ air sparging as an innovative soils and ground water remediation technology. Gound Water Monit. Rev. v.12, p.137-145. https://doi.org/10.1111/j.1745-6592.1992.tb00044.x
  11. National Research Council (1999) Groundwater and Soil Cleanup. National Academy Press, Washington D.C., p.147-150.
  12. Rabiduar, A.J., Blayden, J.M. and Ganguly, C. (1999) Field performance of air-sparging system for removing TCE from groundwater Environ. Sci. Technol. v.33, p.157-162. https://doi.org/10.1021/es980538t
  13. Reddy, K.R. and Adams, J.A. (1998) System effect on benzene removal from saturated soils and groundwaterusing air sparging. J. Environ. Engrg. v.124, p.288-299. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:3(288)
  14. Reddy, K.R., Kosgi, S. and Zhou, J. (1995) A review of insitu air sparging for the remediation of VOC-contaminated saturated soils and groundwater. Haz. Waste and Haz. Mat. v.12, p.97-118. https://doi.org/10.1089/hwm.1995.12.97
  15. Unger, A.J.A., Sudicky, E.A. and Forsyth, P.A. (1995) Mechanisms controlling vacuum extraction coupled with air sparging for remediation of heterogeneous formation contaminated by dense nonaquesous phase liquids. Water Resour. Res. v.31, p.1913-1925. https://doi.org/10.1029/95WR00172