• Title/Summary/Keyword: Layer Height

Search Result 1,042, Processing Time 0.029 seconds

Wind tunnel model studies to predict the action of wind on the projected 558 m Jakarta Tower

  • Isyumov, N.;Case, P.C.;Ho, T.C.E.;Soegiarso, R.
    • Wind and Structures
    • /
    • v.4 no.4
    • /
    • pp.299-314
    • /
    • 2001
  • A study of wind effects was carried out at the Boundary Layer Wind Tunnel Laboratory (BLWTL) for the projected 558-m high free-standing telecommunication and observation tower for Jakarta, Indonesia. The objectives were to assist the designers with various aspects of wind action, including the overall structural loads and responses of the Tower shaft and the antenna superstructure, the local wind pressures on components of the exterior envelope, and winds in pedestrian areas. The designers of the Tower are the East China Architectural Design Institute (ECADI) and PT Menara Jakarta, Indonesia. Unfortunately, the project is halted due to the financial uncertainties in Indonesia. At the time of the stoppage, pile driving had been completed and slip forming of the concrete shaft of the Tower had begun. When completed, the Tower will exceed the height of the CN-Tower in Toronto, Canada by some 5 m.

Efficiency enhancement of Organic Light Emitting Diodes by the AlON interfacial Layer (산소질화알루미늄 계면층에 의한 유기발광 소자의 효율 향상)

  • Park, Hyung-Jun;Hai, Jin Zheng;Nam, Eun-Kyoung;Jung, Dong-Geun;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.388-389
    • /
    • 2007
  • In this work, Organic Light Emitting Diodes using Aluminum-Oxynitride as a hole-injecting interfacial have been fabricated. This interfacial layer is inserted at the ITO/N,NV-diphenyl-N, NV-bis(3-methylphenyl)-1,1V-diphenyl-4,4V-diamine (TPD) interface. The brightness and efficiency of the device with the AION film is higher than that of the device without it. The enhancements are attributed to an improved balance of hole and electron injections due to the energy level realignment and the change in carrier tunneling probability by the interfacial layer.

  • PDF

One-Touch Type Immunosenging Lab-on-a-chip for Portable Point-of-care System (휴대용 POC 시스템을 위한 원터치형 면역 센싱 랩온어칩)

  • Park, Sin-Wook;Kang, Tae-Ho;Lee, Jun-Hwang;Yoon, Hyun-C.;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.8
    • /
    • pp.1424-1429
    • /
    • 2007
  • This paper presents a simple and reliable one-touch type multi-immunosensing lab-on-a-chip (LOC) detecting antibodies as multi-disease markers using electrochemical method suitable for a portable point-of-care system (POCS). The multi-stacked LOC consists of a PDMS space layer for liquids loading, a PDMS valve layer with 50 im in height for the membrane, a PDMS channel layer for the fluid paths, and a glass layer for multi electrodes. For the disposable immunoassay which needs sequential flow control of sample and buffer liquids according to the designed strategies, reliable and easy-controlled on-chip operation mechanisms without any electric power are necessary. The driving forces of sequential liquids transfer are the capillary attraction force and the pneumatic pressure generated by air bladder push. These passive fluid transport mechanisms are suitable for single-use LOC module. Prior to the application of detection of the antibody as a disease marker, the model experiments were performed with anti-DNP antibody and anti-biotin antibody as target analytes. The flow test results demonstrate that we can control the fluid flow easily by using the capillary stop valve and the PDMS check valves. By the model tests, we confirmed that the proposed LOC is easily applicable to the bioanalytic immunosensors using bioelectrocatalysis.

Error Accumulation and Transfer Effects of the Retrieved Aerosol Backscattering Coefficient Caused by Lidar Ratios

  • Liu, Houtong;Wang, Zhenzhu;Zhao, Jianxin;Ma, Jianjun
    • Current Optics and Photonics
    • /
    • v.2 no.2
    • /
    • pp.119-124
    • /
    • 2018
  • The errors in retrieved aerosol backscattering coefficients due to different lidar ratios are analyzed quantitatively in this paper. The actual calculation shows that the inversion error of the aerosol backscattering coefficients using the Fernald backward-integration method increases with increasing inversion distance. The greater the error in the lidar ratio, the faster the error in the aerosol backscattering coefficient increases. For the same error in lidar ratio, the smaller actual aerosol backscattering coefficient will get the larger relative error of the retrieved aerosol backscattering coefficient. The errors in the lidar ratios for dust or the cirrus layer have great impact on the retrievals of backscattering coefficients. The interval between the retrieved height and the reference range is one of the important factors for the derived error in the aerosol backscattering coefficient, which is revealed quantitatively for the first time in this paper. The conclusions of this article can provide a basis for error estimation in retrieved backscattering coefficients of background aerosols, dust and cirrus layer. The errors in the lidar ratio of an aerosol layer influence the retrievals of backscattering coefficients for the aerosol layer below it.

Analysis on the Yeongdong Downslope Windstorms Generation Condition Verified by Observation Cases (관측사례로 검증한 영동강풍 발생조건 분석)

  • Park, Yu-Jung;Han, Youn-Deok
    • Atmosphere
    • /
    • v.31 no.4
    • /
    • pp.405-420
    • /
    • 2021
  • Forest fire happens every year at Yeongdong, Gangwon-do, due to the strong local wind during the spring time and it causes a huge damage. This wind is named "Yangganjipung" or "Yanggangjipung" that blows along Yeongdong. However, the occurrence conditions of the wind have been still unclear. To identify the occurrence mechanism of local strong wind through three-dimensional observation data, Gangwon Regional Meteorological Administration performed Joint Gangwon-Yeongdong 3D Observation Project in 2020. The special observation was carried out for 6 times from March to April. The observation data was analyzed by focusing on the structure of synoptic pressure distribution and inversion layer. The result showed that the strength of wind is different depending on the latitude of low pressure, intensity of inversion layer, and changes on height in the south-high and north-low pressure distribution. As the interval of the upper and lower parts of the inversion layer was narrow, the strength of the wind became stronger, which is one of the observational characteristics of the springtime wind pattern at Yeongdong, Gangwon-do. In future, the clear mechanism of the local wind in the Yeongdong during the spring time is expected to be verified based on the accumulative observation data and close analysis.

Investigation of Spudcan Penetration Resistance in Layered Soil Deposits

  • Jan, Muhammad Asad;Nizamani, Zubair Ahmed;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • A suite of 3D large deformation finite element (FE) analyses was performed to investigate the load transfer mechanism and penetration resistance of spudcan foundations in heterogeneous soil profile consisting of sand and clay. The Elasto-Plastic models following Mohr-Coulomb and Tresca failure criteria were adopted for sand and clay, respectively. The accuracy of the numerical model was validated against centrifuge test measurements. The dense sand behavior with dilation is modeled using the non-associated flow rule. An investigation study consisting of key parameters, which includes variation in soil stratigraphy (sand-clay, sand-clay-sand), strength parameters of sand and clay (��' and su) and normalized height ratio of the sand layer (Hs/D) was conducted to assess the penetration behavior of spudcan. Based on calculated outputs, it was demonstrated that these parameters have a significant influence on the penetration resistance of spudcan. The calculated penetration resistance profiles are compared with the published (sand overlying clay) analytical model. It is confirmed that for the case of two-layer soil, the available theoretical model provides an accurate estimate of peak penetration resistance (qpeak). In the case of three-layer soil, the presence of a third stiff layer affects the penetration resistance profile due to the squeezing of the soil.

Effect of Bedding Layer and Clogging on Drainage Capacity of Pervious Sidewalk Block in Unsaturated Condition (노반 및 공극 막힘 현상에 따른 투수성 보도블록의 불포화 상태에서의 배수 성능에 관한 실험적 연구)

  • Seo, Dawa;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.37-48
    • /
    • 2016
  • This study aims to figure out the behavior of runoff and drainage of pervious sidewalk block in actual construction environment by experiments. The specimens with surface layer and bedding layer are subjected to the drainage test by considering unsaturated condition and unique rainfall condition in urban areas. The repeated drainage test and clogging test were conducted with time intervals, and 3D X-ray CT image analysis and evaporation test were carried out for a quantitative analysis of drainage test. The results present that the spatial distribution of pores by evaporation for time intervals induces runoff. Especially, the bedding layer under the block is significantly critical in overall hydraulic behavior such as drainage and evaporation compared to the surface layer. Moreover, the sediments in pores promote the change in pores by evaporation and this induces deteriorated drainage capacity which is hard to recover. In addition, it is revealed that the maximum runoff height grows as the drainage capacity declines depending on the pre-wetting condition.

Readeveloping Turbulent Boundary Layer after Separation-Reattachment(I) (박리-재부착 이후의 재발달 난류경계층 I)

  • 백세진;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.780-788
    • /
    • 1989
  • An experimental study has been performed to investigate the process from nonequilibrium state to equilibrium state in redeveloping turbulent boundary layer beyond separation-reattachment using pitot tube and hot-wire anemometer. The model sued in the experiment has the form of a backward facing step which is assembled by a two-dimensional 4:1 half elipse and a plate. Measurements are carried out up to a distance of about 50 step height downstream of the step, where the reattachment observed at about x/h=6.5. The profiles of the shape factor H the Clauser parameter G and the coefficient of friction $C^{f}$ exhibited the characteristics similar to those of the equilibrium turbulent boundary layer from x/h=25, and the profiles of the trubulent quantities did from x/h=35. However, the wake region of the boundary layer does not seem to recover the equilibrium turbulent boundary layer even at x/h=50. By considering the distributions of the intermittency factor it has been noted that the turbulence structure changes gradually from a mixing layer to a turbulent boundary layer along downstream direction after reattachment. This becomes clearer as we analyse the one-dimensional energy spectra and the dissipation energy spectra which are measured and caculated at various downstream positions after the backward facing step.p.

InAs 양자점을 이용하여 Silicon (001) 기판위에 제작된 고품질 InSb layer의 특성 분석

  • Im, Ju-Yeong;Song, Jin-Dong;Jo, Nam-Gi;Park, Seong-Jun;Sin, Sang-Hun;Choe, Won-Jun;Lee, Jeong-Il;Kim, Gyeong-Ho;An, Jae-Pyeong;Kim, Hyeong-Jun;Yang, Hae-Seok;Choe, Cheol-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.110-110
    • /
    • 2010
  • 본 실험에서는 Silicon (001) 기판을 사용하여 silicon 기판상에 modified Stranski-Krastanow(S-K) 방식으로 InAs quantum dot (QD) 을 성장하고 그 위에 InSb layer를 형성하였다. 기판온도 $390^{\circ}$에서 In injection period를 4번 반복하여 제작된 InAs quantum dot layer를 buffer로 사용하였으며, QD layer의 밀도는 $1{\mu}m^2$ 당 600개, height가 $6.2\;{\pm}\;2.0\;nm$, width가 $36.1\;{\pm}\;9.2\;nm$ 정도이다. 성장된 $2.8{\mu}m$ 두께의 InSb film의 특성을 분석해 보면 AFM 상에서의 root mean square (rms) roughness는 5.142nm정도이며, electron mobility는 340 K 에서 $41,352cm^2/Vs$, 1.8 K에서는 $4,215cm^2/Vs$ 정도를 나타내었다. 본 실험에서는 다른 실험과는 달리 InAs QD 을 buffer layer로 사용하였으며, silicon기판도 아무런 처리가 되지 않은 (001)기판을 사용하였으므로 기존의 다른 연구 결과와는 차별성을 가진다. 또한 buffer로 사용된 InAs quantum dot layer의 종류를 한 가지로 고정하고 실험을 하였지만 추후 더욱 다양한 밀도와 크기의 quantum dot layer를 적용시키고, 기존의 다른 논문에서 적용된 방법들을 추가로 적용시켜 본다면 mobility값은 더욱 증가할 것으로 생각된다. 이러한 연구를 통해 값이 싸고 구하기 쉬운 silicon기판상에 silicon에 비하여 더 좋은 특성을 갖는 III-V족 화합물 반도체 소자를 구현 할 수 있을 것으로 생각된다.

  • PDF

Hydraulic experiments on wave amplification at concave corner for rubble mound structures (경사식구조물 오목부 구간의 파랑증폭 실험)

  • Kim, Young-Taek;Ahn, Chang-Hyun;Lee, Jong-In
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3074-3080
    • /
    • 2013
  • Amplification of wave height at concave corner was investigated by three dimensional hydraulic tests. A typical rubble mound structure was tested with two-layer Tetrapod and the slope of 1:1.5. The irregular waves with Bretschneider-Mitsuyasu spectrum were applied to the tests. The center angles of concave corner were 120 degree, 140 degree and 160 degree. According to the test results, the maximum wave height amplification ratio at concave corner was about 1.5 times of incident wave height among the all test conditions, and the W-shaped wave height distribution was shown.