DOI QR코드

DOI QR Code

Error Accumulation and Transfer Effects of the Retrieved Aerosol Backscattering Coefficient Caused by Lidar Ratios

  • Liu, Houtong (College of Mathematics, Physics and Engineering, Anhui University of Technology) ;
  • Wang, Zhenzhu (Key Laboratory of Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences) ;
  • Zhao, Jianxin (Logistics and Capital Construction Management Department, Anhui University of Technology) ;
  • Ma, Jianjun (College of Mathematics, Physics and Engineering, Anhui University of Technology)
  • Received : 2017.12.10
  • Accepted : 2018.03.29
  • Published : 2018.04.25

Abstract

The errors in retrieved aerosol backscattering coefficients due to different lidar ratios are analyzed quantitatively in this paper. The actual calculation shows that the inversion error of the aerosol backscattering coefficients using the Fernald backward-integration method increases with increasing inversion distance. The greater the error in the lidar ratio, the faster the error in the aerosol backscattering coefficient increases. For the same error in lidar ratio, the smaller actual aerosol backscattering coefficient will get the larger relative error of the retrieved aerosol backscattering coefficient. The errors in the lidar ratios for dust or the cirrus layer have great impact on the retrievals of backscattering coefficients. The interval between the retrieved height and the reference range is one of the important factors for the derived error in the aerosol backscattering coefficient, which is revealed quantitatively for the first time in this paper. The conclusions of this article can provide a basis for error estimation in retrieved backscattering coefficients of background aerosols, dust and cirrus layer. The errors in the lidar ratio of an aerosol layer influence the retrievals of backscattering coefficients for the aerosol layer below it.

Keywords

References

  1. Q. He, C. Li, J. Mao, and A. K. Lau, "A study on the aerosol extinction-to-backscatter ratio with combination of micro-pulse LIDAR and MODIS over Hong Kong," Atmos. Chem. Phys. 6, 3099-3133 (2003).
  2. B. Veera, R. Anil, J. Mukesh, and R. C. Sharma, "Mie lidar observations of lower tropospheric aerosols and clouds," Spectrochim. Acta. A. 84, 32-36 (2011). https://doi.org/10.1016/j.saa.2011.08.021
  3. Z. Tao, Q. Zhang, K. Yuan, D. Wu, K. Cao, S. Hu, and H. Hu, "Retrieving aerosol backscattering coefficient for short range lidar using parameter selection at reference point," Chin. Opt. Lett. 8, 732-734 (2010). https://doi.org/10.3788/COL20100808.0732
  4. G. Harish and A. Jayaraman, "Airborne lidar study of the vertical distribution of aerosols over Hyderabad, an urban site in central India, and its implication for radiative forcing calculations," Ann. Geophys. 24, 2461-2470 (2006). https://doi.org/10.5194/angeo-24-2461-2006
  5. T. Bangia, A. Kumar, R. Sagar, and S. K. Singh, "Development of Mie LIDAR system and initial cloud observations over Central Himalayan region," Sci. Res. Essays 6, 896-907 (2011).
  6. X. Wang, M. G. Frontoso, G. Pisani, and N. Spinelli, "Retrieval of atmospheric particles optical properties by combining ground-based and spaceborne lidar elastic scattering profiles," Opt. Express 15, 6734-6743 (2007). https://doi.org/10.1364/OE.15.006734
  7. D. Wu, J. Zhou, D. Liu, Z. Wang, Z. Zhong, C. Xie, F. Qi, A. Fan, and Y. Wang, "12-year LIDAR Observations of Tropospheric Aerosol over Hefei ($31.9^{\circ}N$, $117.2^{\circ}E$), China," J. Opt. Soc. Korea 15, 90-95 (2011). https://doi.org/10.3807/JOSK.2011.15.1.090
  8. X. Huang, X. Yang, F. Geng, H. Zhang, Q. He, and L. Bu, "Aerosol measurement and property analysis based on data collected by a micro-pulse LIDAR over Shanghai, China," J. Opt. Soc. Korea 14, 185-189 (2010). https://doi.org/10.3807/JOSK.2010.14.3.185
  9. F. G. Fernald, "Analysis of atmospheric lidar observations: some comments," Appl. Opt. 23, 652 (1984). https://doi.org/10.1364/AO.23.000652
  10. F. Rocadenbosch, M. N. Reba, M. Sicard, and A. Comeron, "Practical analytical backscatter error bars for elastic one-component lidar inversion algorithm," Appl. Opt. 49, 3380 (2010). https://doi.org/10.1364/AO.49.003380
  11. M. Sicard, A. Comeron, F. Rocadenbosch, A. Rodriguez, and C. Munoz, "Quasi-analytical determination of noise-induced error limits in lidar retrieval of aerosol backscatter coefficient by the elastic, two-component algorithm," Appl. Opt. 48, 176-182 (2009). https://doi.org/10.1364/AO.48.000176
  12. A. H. Omar, D. M. Winker, C. Kittaka, M. A. Vaughan, Z. Liu, Y. Hu, C. R. Trepte, R. R. Rogers, R. A. Ferrare, K. P. Lee, R. E. Kuehn, and C. A. Hostetler, "The CALIPSO automated aerosol classification and lidar ratio selection algorithm," J. Atmos. Ocean. Tech. 26, 1994-2014 (2009). https://doi.org/10.1175/2009JTECHA1231.1
  13. Z. Liu, N. Sugimoto, and T. Murayama, "Extinction-to-backscatter ratio of Asian dust observed with high-spectral-resolution lidar and Raman lidar," Appl. Opt. 41, 2760 (2002). https://doi.org/10.1364/AO.41.002760
  14. C. Cordoba-Jabonero, I. Sabbah, M. Sorribas, J. A. Adame, E. Cuevas, F. A. Sharifi, and M. Gil-Ojeda, "Saharan and arabian dust aerosols: a comparative case study of lidar ratio," in Proc. European Physical Journal Web of Conferences (USA, Jun. 2016.) paper 08002.
  15. W. N. Chen, C. W. Chiang, and J. B. Nee, "Lidar ratio and depolarization ratio for cirrus clouds," Appl. Opt. 41, 6470-6 (2002). https://doi.org/10.1364/AO.41.006470