• Title/Summary/Keyword: Launch System

검색결과 913건 처리시간 0.025초

객체지향 설계론을 이용한 발사체 시뮬레이터 개발 (The Development of Launch Vehicle Simulator Using an Object-orinted Design)

  • 최원;정해욱;서진호;홍일희
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2005년도 춘계학술대회 논문집
    • /
    • pp.106-111
    • /
    • 2005
  • LCC(Launch Control Center) in NARO Space Center perform a data monitoring and control through the interface to the external system of launch vehicle. Launch Control function needs a high reliability and processing speed. Hence, LCC's remote control system configure a real time system. An important role of the Simulation system is discovering a risk element and minimize it When developing a launch control system. Also, secure a development technique to solve the risks. Launch Vehicle simulator is composed of various component at characteristic of the Launch Vehicle. To be like this each function component the developer will be able to develop easily in order, it using the LabVIEW which is a Graphical Program and it programs, The LabVIEW GOOP(Graphical Object-orinted Programming) which supports an Object-orinted programming it uses with the Component it develops will have a strong point which reusability and a unit test, maintenance, size of program and individual developments.

  • PDF

발사관제시스템 프로토타입 성능 분석 (LCS(Launch Control System) Prototype Performance Analysis)

  • 홍일희;김양모
    • 시스템엔지니어링학술지
    • /
    • 제2권1호
    • /
    • pp.54-60
    • /
    • 2006
  • LCC(Launch Control Center) in NARO space center performs a data monitoring and control through the interface to the external system of launch vehicle. Launch control function needs high reliability and processing speed. Hence, LCS(Launch Control System) is made up a real time system. An important role of the LCS Prototype is discovering a risk element and minimizing it through developing a launch control system. This paper deals with a real time data processing among the simulator, gateway, data distribution server, command and control server which is involving LCS Prototype.

  • PDF

발사체 열제어/화재안전 시스템 설계 및 시험 (Design and Test of Thermal Control and Fire Safety System for Space Launch Vehicle)

  • 고주용;오택현;이준호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.1006-1010
    • /
    • 2017
  • 본 논문은 발사체의 지상대기 및 운용 중 격실 내부의 열제어 및 화재/폭발 방지를 위해서 적용되는 열제어/화재안전계에 대한 설계 및 시험에 대해서 기술한다. 고려된 시스템은 한국형발사체 개발의 일환으로 진행되고 있는 시험발사체의 열제어/화재안전 시스템으로 이 시스템은 나로호의 경험을 토대로 고압 시스템을 적용한다. 고압 및 저압 시스템의 선정은 발사대의 가스공급 설비 및 발사체의 특성을 고려해서 선정하며 이에 따라 시스템의 구성도 달라진다. 결과적으로 개발된 시스템은 시험을 통해서 초기의 설계 조건을 만족하는 결과를 얻을 수 있음이 확인되었으며, 이러한 시스템은 한국형발사체의 개발에 그대로 확장되어 적용될 예정이다.

  • PDF

우주발사체 개발사업의 비용 추정 현황 및 사례 (Application of Cost Estimation to Space Launch Vehicle Development Program)

  • 유일상;서윤경;이준호;오범석
    • 산업경영시스템학회지
    • /
    • 제30권3호
    • /
    • pp.165-173
    • /
    • 2007
  • A space launch vehicle system represents a typical example of large-scale multi-disciplinary systems, consisting of subsystems such as mechanical structure, electronics, control, telecommunication, propulsion, material engineering etc. A lot of cost is required to develop the launch vehicle system. A precise planning of R&D cost is very essential to make a success of the launch vehicle development program. Especially in the early development phase of a new space launch vehicle system, cost estimation techniques and analogy from past similar development data are very useful methods to estimate a development cost of the launch vehicle system. Now Korea Aerospace Research Institute is in charge of the KSLV-I (Korea Space Launch Vehicle-I) Program that is a part of Korea National Space program. KSLV-I Program is a national undertaking to develop launch capabilities to deliver science satellites of a 100kg-class into a low earth orbit. It is hereafter, going to plan to develop a new korean space launch vehicle. In this paper, first the development costs of well-known launch vehicles in the world are presented to provide a reference to make a development plan of a new launch vehicle. Second this paper introduces the present status of cost estimation applications at NASA. Finally this paper presents the results from application of a TRANSCOST, a parametric cost model, to derive a cost estimate of a new launch vehicle development, as an example.

Development of an Efficient Notching Toolkit for Response Limiting Method

  • Shin, Jo Mun
    • 항공우주시스템공학회지
    • /
    • 제15권4호
    • /
    • pp.40-46
    • /
    • 2021
  • At launch, satellites are exposed to various types of structural loads, such as quasi-static loads, sinusoidal vibrations, acoustic/random vibrations, and shocks. The launch environment test is aimed at verifying the structural stability of the test object against the launch environment. Various types of launch environments are simulated by simple vibration, acoustic, and shock tests considering possible test conditions in ground. However, the difference between the launch environment and the test environment is one of the causes of excessive testing. To prevent overtesting, a notching technique that adjusts the frequency range and the input load considering the design load is applied. For notching, specific procedures are established considering the satellite development concept, selected launch vehicle, higher system requirements, and test target level. In this study, the notching method, established procedure, and development of a notching toolkit for efficient testing are described.

A CONCEPTUAL DESIGN FOR ELECTRICAL GROUNDING ARCHITECTURE OF KOREAN SPACE LAUNCH VEHICLE

  • Kim Kwang-Soo;Lee Soo-Jin;Ma Keun-Soo;Shin Myoung-Ho;Hwang Seung-Hyun;Ji Ki-Man;Chung Eui-Seung
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.231-234
    • /
    • 2004
  • Electrical grounding is defined as referencing an electrical circuit or a common reference plane for preventing shock hazards and for enhancing operability of the circuit and EMI control. In order to realize the best electrical grounding system of korean space launch vehicle, we should design the electrical grounding architecture of korean space launch vehicle of system-level at the earliest point in design procedure. To minimize the electrical grounding loop and the unnecessary electromagnetic interference or radiation among the electronic subsystems, we should establish the electrical grounding rules of the all electrical interfaces. The electrical interfaces among the electronic subsystems are generally classified into the electrical power and signal interfaces. Because of using the primary and secondary power system architecture in the korean space launch vehicle system such as the common space launch vehicle systems, we need to establish the electrical grounding rules between the primary and secondary power system. We also need to establish the electrical signal grounding interface rules among the electronic subsystems. In this paper, we will describe the grounding schemes of the common space launch vehicle system and propose a conceptual design for the electrical grounding architecture of korean space launch vehicle system.

  • PDF

발사체 극저온 추진제 충전시스템 개발 (Development of Cryogenic Propellant Filling System for Launch Vehicle)

  • 유병일;김지훈;박편구;박순영
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.676-677
    • /
    • 2010
  • 나로우주센터에서 2차에 걸친 나로호 발사가 수행되었다. 나로호 발사를 위한 나로우주센터 발사대는 연료 및 산화제, 고압가스 등 발사체 발사운용에 필요한 추진제 공급설비를 갖추고 있으며, 본 논문에서는 발사대 추진제 공급설비 중 극저온 추진제인 액체산소 충전시스템에 대한 개발 과정 및 운용방법에 대해 고찰한다.

  • PDF

KSLV-I 조립콤플렉스 시스템 설계 (KSLV-I Assembly Complex System Design)

  • 진승보;박정주
    • 시스템엔지니어링학술지
    • /
    • 제2권1호
    • /
    • pp.37-41
    • /
    • 2006
  • The KSLV-I satellite launch vehicle will be launched in a space center currently under construction. The Space Center which is an advance post base of space development of Korea is located on Oenaro island in Kohung, South Cholla Province. A Ground Complex of the Space Center consists of an AC(Assembly Complex), a LC(Launch Complex), and a MCC(Mission Control Center). Assembly and test facilities are located in the AC in which stage assembly, integrated assembly, check-up, certification test, and pre-launch test are made effectively. A launch pad, fuel supply facilities, a launch control center and associated supporting facilities are located in the LC, and the MCC has control over the space center. These ground complex facilities have diverse forms of an interface with mechanical device, electric device, and etc. These should also provide optimum condition and performance during launch operation processes of the launch vehicle. This paper introduces the result of R&D for the AC of the ground complex performed during system design period.

  • PDF

우주발사체 추진기관의 신뢰도 평가 (Evaluation of reliability for propulsion system of launch vehicle)

  • 조상연;김용욱;오승협;박찬빈
    • 시스템엔지니어링학술지
    • /
    • 제1권1호
    • /
    • pp.61-66
    • /
    • 2005
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated and applied to the liquid rocket engine of KSR-III.

  • PDF

물 분사 냉각시스템을 이용한 발사대 화염유도로의 냉각특성 (The Cooling Characteristics of a Gas Deflector Using Water Spray Cooling System in Launch Pad)

  • 이광진;정용갑;조남경;남중원;정일형;라승호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제37회 추계학술대회논문집
    • /
    • pp.756-762
    • /
    • 2011
  • 화염유도로 냉각시스템은 발사체 엔진의 점화 시 발생하는 충격파를 감쇠하는 중요한 역할을 수행한다. 또한 이 시스템은 발사체의 구조와 페이로드를 손상시킬 수 있는 커다란 진동을 감소시키기도 한다. 나로우주센터의 발사대에 설치된 화염유도로 냉각시스템은 발사체 엔진의 화염에 직접 물을 분사시키도록 구축되었으며, 나로호의 비행시험 결과는 화염유도로를 냉각하는 관점에서 이 방법이 기능상 우수함을 보여 주었다.

  • PDF