• Title/Summary/Keyword: Large-scale Factory

Search Result 57, Processing Time 0.021 seconds

Voltage Compensation Analysis in Distribution System by EMTP (EMTP를 이용한 수변전계통의 전압보상설비효과 분석기법)

  • 설용태;권혁일
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.101-107
    • /
    • 1996
  • This paper proposed the voltage compensation analysis method in distribution system by EMTP. SVC (Static Var Compensator) of the thyristor controlled reactor type is used for compensation system. EMTP(E1ectr-o Magnetic Transient Program) model of SVC is proposed to analysis the voltage improvement characteristics at the high voltage system bus. It is composed with three parts ; rms detector, voltage regulator and gate pulse generator. The control signal of TCR is determined by rms value which was measured in system. As the result of EMTP simulation, all of the SVC characteristics like TCR current, firing pulse and bus voltage is very reliable. This method could be used to analysis the planning and the operation of compensation system in the large scale factory.

  • PDF

Object oriented simulation in a CIM environment

  • 김종수
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1991.10a
    • /
    • pp.67-76
    • /
    • 1991
  • For several years, graduate students and faculty of the Engineering Systems Research Center at U.C., Berkeley have been studying new methods of planning and scheduling in a computer integrated manufacturing environment, with particular emphasis on large scale integrated circuit fabrication. One part of this work, focusing on short interval scheduling, uses simulation models as a primary research tool. We have built two versions of the same basic model (programmed in C) to study two different problems (one deals with machine down time and the other with setup times). These have proven to be efficient for studying particular problems, but are difficult and time consuming to modify. We are convinced that our research will be more effective: (1) if it were easier to build special purpose models tailored to the research question at hand; and (2) if we had better interfaces to graphics output. Commercially available factory simulators are inadequate for this research for a variety of reasons. Existing packages such as SIMKIT, SLAM, SIMAN and EXCELL have their own weaknesses. Typically, they are hard to develop and to modify. They do not allow for adding new dispatching decisions or release decision. Also, it is hard to add more machines to existing environment or change the route the product flows. For these various reasons, we had developed a new simulation package having flexibility and modularity. In this paper, based on experiences gained in the application of object oriented programming, we discuss unique features of the simulator developed in OOPS and ways to take advantage of features in developing and using manufacturing simulation software written in the OOPS

  • PDF

Design and Application of LoRa-based Network Protocol in IoT Networks (사물 네트워크에서 LoRa 기반 네트워크 프로토콜 설계 및 적용)

  • Lee, Sung-Keun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.6
    • /
    • pp.1089-1096
    • /
    • 2019
  • Recently, small-scale IoT services using a small amount of information through low-performance computing have been spread. It requires low cost, low-power, and long-distance communication technologies with wide communication radius, relatively low power consumption. This paper proposes a MAC layer and routing protocol that supports multi-hop transmission in small-scale IoT environment distributed over a large area based on LoRa communication and delivering a small amount of sensing data. The terminal node is mobile and the communication type provides bidirectional transmission between the terminal node and the network application server. By applying the proposed protocol, a production line monitoring system for smart factory was implemented. It was confirmed that the basic monitoring functions are normally performed.

3D Printing in Modular Construction: Opportunities and Challenges

  • Li, Mingkai;Li, Dezhi;Zhang, Jiansong;Cheng, Jack C.P.;Gan, Vincent J.L.
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.75-84
    • /
    • 2020
  • Modular construction is a construction method whereby prefabricated volumetric units are produced in a factory and are installed on site to form a building block. The construction productivity can be substantially improved by the manufacturing and assembly of standardized modular units. 3D printing is a computer-controlled fabrication method first adopted in the manufacturing industry and was utilized for the automated construction of small-scale houses in recent years. Implementing 3D printing in the fabrication of modular units brings huge benefits to modular construction, including increased customization, lower material waste, and reduced labor work. Such implementation also benefits the large-scale and wider adoption of 3D printing in engineering practice. However, a critical issue for 3D printed modules is the loading capacity, particularly in response to horizontal forces like wind load, which requires a deeper understanding of the building structure behavior and the design of load-bearing modules. Therefore, this paper presents the state-of-the-art literature concerning recent achievement in 3D printing for buildings, followed by discussion on the opportunities and challenges for examining 3D printing in modular construction. Promising 3D printing techniques are critically reviewed and discussed with regard to their advantages and limitations in construction. The appropriate structural form needs to be determined at the design stage, taking into consideration the overall building structural behavior, site environmental conditions (e.g., wind), and load-carrying capacity of the 3D printed modules. Detailed finite element modelling of the entire modular buildings needs to be conducted to verify the structural performance, considering the code-stipulated lateral drift, strength criteria, and other design requirements. Moreover, integration of building information modelling (BIM) method is beneficial for generating the material and geometric details of the 3D printed modules, which can then be utilized for the fabrication.

  • PDF

Analysis of Air-water Temperature Elasticity Taking into Account the Confidence Interval in Major Tributary of Nakdong River (낙동강 주요 지류의 신뢰구간을 고려한 기온-수온 탄성도 분석)

  • Park, Jaebeom;Kal, Byungseok;Kim, Seongmin
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.178-186
    • /
    • 2020
  • In this study, the elasticity was calculated and sensitivity analysis was performed using air-water temperature data of the major tributaries of the Nakdong River. We developed a nonparametric elasticity analysis technique capable of estimating the confidence interval for elasticity and verifying the hypothesis, and examined its applicability compared to the existing method using the median value. It is analyzed that the elasticity of winter is low and the elasticity of summer and autumn is high, so that the fluctuation of water temperature and water quality according to the fluctuation of air temperature is large. The spatial elasticity tends to be low in the Geumho River area, which is influenced by artificial factors such as sewage treatment plant effluent, small and medium-sized livestock wastewater, and small-scale factory wastewater. Since the elasticity of major tributaries of the Nakdong River is over weak and is reasonable at a significance level of 5%, it was analyzed that the air-water temperature fluctuation caused by climate changes is large.

Current status and future of insect smart factory farm using ICT technology (ICT기술을 활용한 곤충스마트팩토리팜의 현황과 미래)

  • Seok, Young-Seek
    • Food Science and Industry
    • /
    • v.55 no.2
    • /
    • pp.188-202
    • /
    • 2022
  • In the insect industry, as the scope of application of insects is expanded from pet insects and natural enemies to feed, edible and medicinal insects, the demand for quality control of insect raw materials is increasing, and interest in securing the safety of insect products is increasing. In the process of expanding the industrial scale, controlling the temperature and humidity and air quality in the insect breeding room and preventing the spread of pathogens and other pollutants are important success factors. It requires a controlled environment under the operating system. European commercial insect breeding facilities have attracted considerable investor interest, and insect companies are building large-scale production facilities, which became possible after the EU approved the use of insect protein as feedstock for fish farming in July 2017. Other fields, such as food and medicine, have also accelerated the application of cutting-edge technology. In the future, the global insect industry will purchase eggs or small larvae from suppliers and a system that focuses on the larval fattening, i.e., production raw material, until the insects mature, and a system that handles the entire production process from egg laying, harvesting, and initial pre-treatment of larvae., increasingly subdivided into large-scale production systems that cover all stages of insect larvae production and further processing steps such as milling, fat removal and protein or fat fractionation. In Korea, research and development of insect smart factory farms using artificial intelligence and ICT is accelerating, so insects can be used as carbon-free materials in secondary industries such as natural plastics or natural molding materials as well as existing feed and food. A Korean-style customized breeding system for shortening the breeding period or enhancing functionality is expected to be developed soon.

Industrial Fluctuations and Locality of Busan with Records (기록으로 본 부산의 산업변동과 로컬리티)

  • Song, Jung-Sook
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.16 no.2
    • /
    • pp.143-172
    • /
    • 2016
  • This study analyzes the process of growth of Busan from a fishing village to the capital city of South Gyeongsang Province and the central city of transportation and commerce, and an industry with records. The results of the analysis are as follows: after the port opened in 1876, there has been a decline in settlement spaces in Dongnae; on the other hand, there has been an increase in migration spaces around the port of Busan. Waegwan (倭館) nearby Yongdusan Mountain (龍頭山) was changed to the Japanese concession; thus, the number of Japanese moving into Busan had rapidly increased. As a result, the Japanese government carried out reclamation work for securing available lands for the construction of port facilities and other facilities. The Japanese government built public offices and houses, as well as production facilities for daily necessities around the port of Busan. The opening of the Seoul Busan railway (京釜線) and the cross-channel liner between Busan and Shimonoseki (釜關連絡船) led to the growth of Busan and the development of its status. At this time, as the main industry of Busan was trade, Busan had grown as a commercial city. As Busan had grown as a central city of transportation and commerce, the provincial government building of Gyeongsangnam-do (慶尙南道) moved to Busan. Thus, Busan became the central city of local politics and administration. After the Land Survey Project, a large scale of farmers were recruited for low-wage work in the new port. Because of the abolition of the corporation law, Japanese capitalists moved into their colony in Busan. There, large-scale factories, such as the Joseon cotton textile factory, were established. Through this process, the locality of Busan was changed from a fishing village to a commercial city and, finally, to a city of commerce and industry.

Development of Smart Garden Control System Using Probabilistic Filter Algorithm Based on SLAM (SLAM기반 확률적 필터 알고리즘을 이용한 스마트 식물 제어 시스템 개발)

  • Lee, Yang-Weon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.465-470
    • /
    • 2017
  • This paper designs and implements a smart garden system using probabilistic filter algorithm using SLAM that can be used in apartment or veranda. To do this, we used Arduino and environtal sensors, which are open hardware controllers, and designed to control and observe automatic water supply, lighting, and growth monitoring with three wireless systems (Bluetooth, Ethernet, WiFi). This system has been developed to make it possible to use it in an indoor space such as an apartment, rather than a large-scale cultivation system such as a conventional plant factory which has already been widely used. The developed system collects environmental data by using soil sensor, illuminance sensor, humidity sensor and temperature sensor as well as control through smartphone app, analyzes the collected data, and controls water pump, LED lamp, air ventilation fan and so on. As a wireless remote control method, we implemented Bluetooth, Ethernet and WiFi. Finally, it is designed for users to enable remote control and monitoring when the user is not in the house.

Accelerated Large-Scale Simulation on DEVS based Hybrid System using Collaborative Computation on Multi-Cores and GPUs (멀티 코어와 GPU 결합 구조를 이용한 DEVS 기반 대규모 하이브리드 시스템 모델링 시뮬레이션의 가속화)

  • Kim, Seongseop;Cho, Jeonghun;Park, Daejin
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.1-11
    • /
    • 2018
  • Discrete event system specification (DEVS) has been used in many simulations including hybrid systems featuring both discrete and continuous behavior that require a lot of time to get results. Therefore, in this study, we proposed the acceleration of a DEVS-based hybrid system simulation using multi-cores and GPUs tightly coupled computing. We analyzed the proposed heterogeneous computing of the simulation in terms of the configuration of the target device, changing simulation parameters, and power consumption for efficient simulation. The result revealed that the proposed architecture offers an advantage for high-performance simulation in terms of execution time, although more power consumption is required. With these results, we discovered that our approach is applicable in hybrid system simulation, and we demonstrated the possibility of optimized hardware distribution in terms of power consumption versus execution time via experiments in the proposed architecture.

Smoothing DRR: A fair scheduler and a regulator at the same time (Smoothing DRR: 스케줄링과 레귤레이션을 동시에 수행하는 서버)

  • Joung, Jinoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.63-68
    • /
    • 2019
  • Emerging applications such as Smart factory, in-car network, wide area power network require strict bounds on the end-to-end network delays. Flow-based scheduler in traditional Integrated Services (IntServ) architecture could be possible solution, yet its complexity prohibits practical implementation. Sub-optimal class-based scheduler cannot provide guaranteed delay since the burst increases rapidly as nodes are passed by. Therefore a leaky-bucket type regulator placed next to the scheduler is being considered widely. This paper proposes a simple server that achieves both fair scheduling and traffic regulation at the same time. The performance of the proposed server is investigated, and it is shown that a few msec delay bound can be achieved even in large scale networks.