• Title/Summary/Keyword: Langmuir probe

Search Result 216, Processing Time 0.033 seconds

Electron Temperature, Plasma Density and Luminous Efficiency in accordance with Discharge Time in coplanar AC PDPs

  • Jeong, S.H.;Moon, M.W.;Oh, P.Y.;Jeong, J.M.;Ko, B.D.;Park, W.B.;Lee, J.H.;Lim, J.E.;Lee, H.J.;Han, Y.G.;Son, C.G.;Lee, S.B.;Yoo, N.L.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1203-1206
    • /
    • 2005
  • Electron temperature and plasma density in coplanar alternating-current plasma display panels (AC-PDP's) have been experimentally investigated in accordance with discharge time by a micro-probe in this experiment. The resolution of a step mortor to move in micro-Langmuir probe is 10um.[1-3] The used gas in this experiment is He-Ne-Xe (4%) mixure gas. And sustain voltage is 320V which is above of firing voltage for degradation. The electron temperature and plasma density can be obtained from current-voltage (I-V) characteristics of micro Langmuir probe, in which negative to positive bias voltage was applied to the probe. And Efficiency is calculated by formula related discharge power and light emission. Those experiments operated as various discharge time ($0{\sim}72$ Hours). As a result of this experiment, Electron Temperature was increased from 2eV to 5eV after discharge running time of 20 hours and saturates beyond 20 hours. The plasma density is inversely proportional to the square root of electron temperature. So the plasma density was decreased from $1.8{\times}10^{12}cm^{-3}$ to $8{\times}10^{11}cm^{-3}$ at above discharge running time. And the Efficiency was reduced to 70% at 60hours of discharge running time.

  • PDF

The Electrical and Optical Properties of Xe Flat Plasma Light Source (제논 (Xe) 평판형 플라즈마 광원의 전기적 및 광학적 특성 연구)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup;Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.86-90
    • /
    • 2006
  • Discharge of the flat lamp lighting source research are requested very much. For improving brightness, life time, efficiency of flat lamp, plasma diagnosis of the f1at lamp lighting source to understand property of lighting source is very important. Distance of discharge electrode is 5.5mm and width is 16.5mm, we have measured electron temperature and electron density measured with single Langmuir probe in flat lamp. We have tested the discharge from 100 Torr to 300 Torr pressure. The pulse is rectangular pulse with frequency 20kHz and duty ratio 20%. In result, electron temperature decreases and electron density increase as increase the gas pressure and electron temperature decreases and electron density increase as increase the voltage.

  • PDF

Science Objectives and Design of Ionospheric Monitoring Instrument Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) for the CAS500-3 Satellite

  • Ryu, Kwangsun;Lee, Seunguk;Woo, Chang Ho;Lee, Junchan;Jang, Eunjin;Hwang, Jaemin;Kim, Jin-Kyu;Cha, Wonho;Kim, Dong-guk;Koo, BonJu;Park, SeongOg;Choi, Dooyoung;Choi, Cheong Rim
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.117-126
    • /
    • 2022
  • The Ionospheric Anomaly Monitoring by Magnetometer And Plasma-probe (IAMMAP) is one of the scientific instruments for the Compact Advanced Satellite 500-3 (CAS 500-3) which is planned to be launched by Korean Space Launch Vehicle in 2024. The main scientific objective of IAMMAP is to understand the complicated correlation between the equatorial electro-jet (EEJ) and the equatorial ionization anomaly (EIA) which play important roles in the dynamics of the ionospheric plasma in the dayside equator region. IAMMAP consists of an impedance probe (IP) for precise plasma measurement and magnetometers for EEJ current estimation. The designated sun-synchronous orbit along the quasi-meridional plane makes the instrument suitable for studying the EIA and EEJ. The newly-devised IP is expected to obtain the electron density of the ionosphere with unprecedented precision by measuring the upper-hybrid frequency (fUHR) of the ionospheric plasma, which is not affected by the satellite geometry, the spacecraft potential, or contamination unlike conventional Langmuir probes. A set of temperature-tolerant precision fluxgate magnetometers, called Adaptive In-phase MAGnetometer, is employed also for studying the complicated current system in the ionosphere and magnetosphere, which is particularly related with the EEJ caused by the potential difference along the zonal direction.

RETRIEVAL OF ELECTRON DENSITY PROFILE FOR KOMPSAT-5 GPS RADIO OCCULTATION DATA PROCESSING SYSTEM (아리랑위성 5호의 GPS 전파 엄폐 자료처리시스템 개발을 위한 전리층 전자밀도 산출)

  • Lee, Woo-Kyoung;Chun, Jong-Kyun;Cho, Sung-Ki;Park, Jong-Uk;Cho, Jung-Ho;Yoon, Jae-Cheol;Lee, Jin-Ho;Chun, Yong-Sik;Lee, Sang-Ryul
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.297-308
    • /
    • 2007
  • The AOPOD (Atmosphere Occultation and Precision Orbit Determination) system, the secondary payload of KOMPSAT (KOrea Multi-Purpose SATellite)-5 scheduled to be launched in 2010, shall provide GPS radio occultation data. In this paper, we simulated the GPS radio occultation characteristic of KOMPSAT-5 and retrieved electron density profiles using KROPS (KASI Radio Occultation Processing Software). The electron density retrieved from CHAMP (CHAllenging Minisatellite Payload) GPS radio occultation data on June 20, 2004 was compared with IRI (International Reference Ionosphere) - 2001, PLP (Planar Langmuir Probe), and ionosonde measurements. When the result was compared with ionosonde measurements, the discrepancies were 5 km on the $F_2$ peak height ($hmF_2$) and $3{\times}10^{10}el/m^3$ on the electron density of the $F_2$ peak height ($NmF_2$). By comparing with the Laugmuir Probe measurements of CHAMP satellite (PLP), both agrees with $1.6{\times}10^{11}el/m^3$ at the height of 365.6 km.

The Study on the Non-Uniformity of PECVD SiO2 Deposition by the Plasma Diagnostics (플라즈마 진단에 의한 PECVD SiO2 증착의 불균일성 원인 연구)

  • Ham, Yong-Hyun;Kwon, Kwang-Ho;Lee, Hyun-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.89-94
    • /
    • 2011
  • The cause of the thickness non-uniformity in the large area deposition of $SiO_2$ films by PECVD(Plasma Enhanced Chemical Vapor Deposition) was investigated by the plasma diagnostics. The spatial distribution of the plasma species in the chamber was obtained with DLP(Double Langmuir Probe) and the new-designed probe-type QMS(Quadrupole Mass Spectrometer). From the relationship between the spatial distribution of the plasma species and the depositing rate of the $SiO_2$ films, it was conformed that the non-uniform deposition of $SiO_2$ films was related with the spatial distribution of the oxygen radical density and electron temperature.

Physical properties of TiN thin films deposited by grid-assisted magnetron sputtering

  • Jung, Min J.;Nam, Kyung-H.;Han, Jeon-G.;Shaginyan, Leonid-R.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.46-46
    • /
    • 2002
  • It is well known that thin film growth and surface morphology can be substantially modified by ion-bombardment during the deposition. This is particularly important in case of thin-film deposition at low temperatures where the film growth occurs under highly nonequilibrium conditions. An attractive way to promote crystalline growth and surface morphology is deposition of additional energy in to the surface of the growing film by bombardment with hyperthermal particles. We were deposited crystalline Ti and TiN thin films on Si substrate by magnetron sputtering method with grid. Its thin films were highly smoothed and dense as increasing grid bias. In order explore the benefits of a bombardment of the growing film with high energetic particles. Ti and TiN films were deposited on Si substrates by an unbalanced magnetron sputter source with attached grid assembly for energetic ion extraction. Also, we have studied the variation of the plasma states by Langmuir probe and Optical Emission Spectroscopy (OES). The epitaxial orientation. microstructual characteristics. electrical and surface properties of the films were analyzed by XRD. SEM. Four point probe and AFM.

  • PDF

A study on the characteristics of axially magnetized capacitively coupled radio frequency plasma (축 방향 자장이 인가된 용량 결합형 라디오 주파수 플라즈마의 특성 연구)

  • Lee, Ho-Jun;Yi, Dong-Yung;Tae, Heung-Sik;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1066-1068
    • /
    • 1999
  • Magnetic field is commonly used in low temperature processing plasmas in order to obtain high density. E $\times$ B magnetron or surface multipole configuration were most popular. However, the properties of capacitively coupled rf plasma confined by axially applied static magnetic fields have rarely been studied. In this paper, the effects of magnetic field on the characteristics of 13.56MHz/40KHz argon plasma will be reported. Ion saturation current, electron temperature and plasma potential were measured by Langmuir probe and omissive probe. At low pressure region ($\sim$10mTorr), ion current was increased by a factor of 3 - 4 due to reduction of diffusion loss of charged particles to the wall. It was observed that magnetic field induces large time variation of the plasma potential. The experimental result was compared with particle-in-cell simulation. It was also observed that electron temperature tend to decrease with increasing magnetic induction level for 40KHz discharge.

  • PDF

Manufacturing and characterization of ECR-PECVD system (ECR-PECVD 장치의 제작과 특성)

  • 손영호;정우철;정재인;박노길;황도원;김인수;배인호
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.1
    • /
    • pp.7-15
    • /
    • 2000
  • An ECR-PECVD system with the characteristics of high ionization rat다 ability of plasma processing in a wide pressure range and deposition at low temperature was manufactured and characterized for the deposition of thin films. The system consists of a vacuum chamber, sample stage, vacuum gauge, vacuum pump, gas injection part, vacuum sealing valve, ECR source and a control part. The control of system is carried out by the microprocessor and the ROM program. We have investigated the vacuum characteristics of ECR-PECVD system, and also have diagnosed the characteristics of ECR microwave plasma by using the Langmuir probe. From the data of system and plasma characterization, we could confirmed the stability of pressure in the vacuum chamber according to the variation of gas flow rate and the effect of ion bombardment by the negative DC self bias voltage. The plasma density was increased with the increase of gas flow rate and ECR power. On the other hand, it was decreased with the increase of horizontal radius and distance between ECR source and probe. The calculated plasma densities were in the range of 49.7\times10^{11}\sim3.7\times10^{12}\textrm{cm}^{-3}$. It is also expected that we can estimate the thickness uniformity of film fabricated by the ECR-PECVD system from the distribution of the plasma density.

  • PDF

Spectroscopic Analysis of the Remote-plasma-polymerized Methyl Methacrylate Film (원격 플라즈마 중합된 메틸메타크릴레이트 필름의 분광학적 분석)

  • Seomoon, Kyu
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.49-54
    • /
    • 2021
  • Plasma-polymerized methyl methacrylate (MMA) thin films were synthesized by remote plasma, and effects of plasma power, reaction pressure and direct-indirect plasma on the growth rate and chemical bonding were investigated with alpha-step, FT-IR, XPS and Langmüir probe method. As the plasma power and pressure increased, the tendency of growth rate showed maximum value at a certain range. FT-IR and XPS analyses revealed that composition ratio of C/O and hydrocarbon (C-C) % in the deposited films increased with plasma power, but ester (COO) C % decreased with it. Direct plasma method was effective for fast growth rate, but indirect plasma method was favorable for maintaining the chemical structure of MMA.

Time variation characteristic of pulse-modulated high frequency plasma (펄스 모듈레이션된 고주파 플라즈마의 시변 특성)

  • Lee, S.H.;Lee, D.S.;Jo, Y.S.;Kim, D.H.;Lee, H.J.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1817-1819
    • /
    • 2004
  • From the plasma application point of view, electron temperature and density are one of the most important parameters for plasma process. But it is only available to control plasma by adjusting external factors like gas pressure and input power. In this paper, pulse-modulated plasma is generated by modulating 13.56GHz RF power with 1, 5, 10kHz pulse. And Langmuir probe technique is used to study the distribution of electron temperature and density. When modulated pulse is off, electron temperature decreases gradually in form of exponential decay. The value t of exponential decay slope is 33.619, 13.834, 10.803 in 1kHz. 5kHz. 10kHz. This implies that this method can be used to control electron temperature and density.

  • PDF