• Title/Summary/Keyword: Land-cover Classification

Search Result 431, Processing Time 0.026 seconds

Land Cover Classification Using Lidar and Optical Image (라이다와 광학영상을 이용한 토지피복분류)

  • Cho Woo-Sug;Chang Hwi-Jung;Kim Yu-Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.139-145
    • /
    • 2006
  • The advantage of the lidar data is in fast acquisition and process time as well as in high accuracy and high point density. However lidar data itself is difficult to classify the earth surface because lidar data is in the form of irregularly distributed point clouds. In this study, we investigated land cover classification using both lidar data and optical image through a supervised classification method. Firstly, we generated 1m grid DSM and DEM image and then nDSM was produced by using DSM and DEM. In addition, we had made intensity image using the intensity value of lidar data. As for optical images, the red, blue, green band of CCD image are used. Moreover, a NDVI image using a red band of the CCD image and infrared band of IKONOS image is generated. The experimental results showed that land cover classification with lidar data and optical image together could reach to the accuracy of 74.0%. To improve classification accuracy, we further performed re-classification of shadow area and water body as well as forest and building area. The final classification accuracy was 81.8%.

Atmospheric Correction Effectiveness Analysis and Land Cover Classification Using Airborne Hyperspectral Imagery (항공 하이퍼스펙트럴 영상의 대기보정 효과 분석 및 토지피복 분류)

  • Lee, Jin-Duk;Bhang, Kon-Joon;Joo, Young-Don
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.7
    • /
    • pp.31-41
    • /
    • 2016
  • Atmospheric correction as a preprocessing work should be performed to conduct accurately landcover/landuse classification using hyperspectral imagery. Atmospheric correction on airborne hyperspectral images was conducted and then the effect of atmospheric correction by comparing spectral reflectance characteristics before and after atmospheric correction for a few landuse classes was analyzed. In addition, land cover classification was first conducted respectively by the maximum likelihood method and the spectral angle mapper method after atmospheric correction and then the results were compared. Applying the spectral angle mapper method, the sea water area were able to be classified with the minimum of noise at the threshold angle of 4 arc degree. It is considered that object-based classification method, which take into account of scale, spectral information, shape, texture and so forth comprehensively, is more advantageous than pixel-based classification methods in conducting landcover classification of the coastal area with hyperspectral images in which even the same object represents various spectral characteristics.

Classification of Land Cover over the Korean Peninsula Using Polar Orbiting Meteorological Satellite Data (극궤도 기상위성 자료를 이용한 한반도의 지면피복 분류)

  • Suh, Myoung-Seok;Kwak, Chong-Heum;Kim, Hee-Soo;Kim, Maeng-Ki
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.138-146
    • /
    • 2001
  • The land cover over Korean peninsula was classified using a multi-temporal NOAA/AVHRR (Advanced Very High Resolution Radiometer) data. Four types of phenological data derived from the 10-day composited NDVI (Normalized Differences Vegetation Index), maximum and annual mean land surface temperature, and topographical data were used not only reducing the data volume but also increasing the accuracy of classification. Self organizing feature map (SOFM), a kind of neural network technique, was used for the clustering of satellite data. We used a decision tree for the classification of the clusters. When we compared the classification results with the time series of NDVI and some other available ground truth data, the urban, agricultural area, deciduous tree and evergreen tree were clearly classified.

  • PDF

The Cover Classification using Landsat TM and KOMPSAT-1 EOC Remotely Sensed Imagery -Yongdamdam Watershed- (Landsat TM KOMPSAT-1 EOC 영상을 이용한 용담댐 유역의 토지피복분류(수공))

  • 권형중;장철희;김성준
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.419-424
    • /
    • 2000
  • The land cover classification by using remotely sensed image becomes necessary and useful for hydrologic and water quality related applications. The purpose of this study is to obtain land classification map by using remotely sensed data : Landsat TM and KOMPSAT-1 EOC. The classification was conducted by maximum likelihood method with training set and Tasseled Cap Transform. The best result was obtain from the Landsat TM merged by KOMPSAT EOC, that is, similar with statistical data. This is caused by setting more precise training set with the enhanced spatial resolution by using KOMPSAT EOC(6.6m${\times}$6.6m).

  • PDF

Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types (도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법)

  • Kim, Youngran;Hwang, Seonghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.

The Comparison of Visual Interpretation & Digital Classification of SPOT Satellite Image

  • Lee, Kyoo-Seock;Lee, In-Soo;Jeon, Seong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.433-438
    • /
    • 1999
  • The land use type of Korea is high-density. So, the image classification using coarse resolution satellite image may not provide land cover classification results as good as expected. The purpose of this paper is to compare the result of visual interpretation with that of digital image classification of 20 m resolution SPOT satellite image at Kwangju-eup, Kyunggi-do, Korea. Classes are forest, cultivated field, pasture, water and residential area, which are clearly discriminated in visual interpretation. Maximum likelihood classifier was used for digital image classification. Accuracy assessment was done by comparing each classification result with ground truth data obtained from field checking. The classification result from the visual interpretation presented an total accuracy 9.23 percent higher than that of the digital image classification. This proves the importance of visual interpretation for the area with high density land use like the study site in Korea.

  • PDF

Characteristics of MODIS land-cover data sets over Northeast Asia for the recent 12 years(2001-2012) (동북아시아 지역에서의 최근 12년간 (2001-2012) MODIS 토지피복 분류 자료의 특성)

  • Park, Ji-Yeol;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.511-524
    • /
    • 2014
  • In this study, we investigated the statistical occupations and interannual variations of land cover types over Northeast Asian region using the 12 years (2001-2012) MODerate Resolution Imaging Spectroradiometer(MODIS) land cover data sets. The spatial resolution and land cover types of MODIS land cover data sets are 500 m and 17, respectively. The 12-year average shows that more than 80% of the analysis region is covered by only 3 types of land cover, cropland (36.96%), grasslands (23.14%) and mixed forests (22.97%). Whereas, only minor portion is covered by cropland/natural vegetation mosaics (6.09%), deciduous broadleaf forests (4.26%), urban and built-up (2.46%) and savannas (1.54%). Although sampling period is small, the regression analysis showed that the occupations of evergreen needleleaf forests, deciduous broadleaf forests and mixed forests are increasing but the occupations of woody savannas and savannas are decreasing. In general, the pixels where the land cover types are classified differently with year are amount to more than 10%. And the interannual variations in the occupations of land cover types are most prominent in cropland (1.41%), mixed forests (0.82%) and grasslands (0.73%). In addition, the percentage of pixels classified as 1 type for 12 years is only 57% and the other pixels are classified as more than 2 types, even 9 types. The annual changes in the classification of land cover types are mainly occurred at the almost entire region, except for the eastern and northwestern parts of China, where the single type of land cover located. When we take into consider the time scale needed for the land cover changes, the results indicate that the MODIS land cover data sets over the Northeast Asian region should be used with caution.

Study of Comparison of Classification Accuracy of Airborne Hyperspectral Image Land Cover Classification though Resolution Change (해상도변화에 따른 항공초분광영상 토지피복분류의 분류정확도 비교 연구)

  • Cho, Hyung Gab;Kim, Dong Wook;Shin, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2014
  • This paper deals with comparison of classification accuracy between three land cover classification results having difference in resolution and they were classified with eight classes including building, road, forest, etc. Airborne hyperspectral image used in this study was acquired at 1000m, 2000m, 3000m elevation and had 24 bands(0.5m spatial resolution), 48 bands(1.0m), 96 bands(1.5m). Assessment of classification accuracy showed that the classification using 48 bands hyperspectral image had outstanding result as compared with other images. For using hyperspectral image, it was verified that 1m spatial resolution image having 48 bands was appropriate to classify land cover and qualitative improvement is expected in thematic map creation using airborne hyperspectral image.

A comparison of neural networks and maximum likelihood classifier for the classification of land-cover (토지피복분류에 있어 신경망과 최대우도분류기의 비교)

  • Jeon, Hyeong-Seob;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.2 s.16
    • /
    • pp.23-33
    • /
    • 2000
  • On this study, Among the classification methods of land cover using satellite imagery, we compared the classification accuracy of Neural Network Classifier and that of Maximum Likelihood Classifier which has the characteristics of parametric and non-parametric classification method. In the assessment of classification accuracy, we analyzed the classification accuracy about testing area as well as training area that many analysts use generally when assess the classification accuracy. As a result, Neural Network Classifier is superior to Maximum Likelihood Classifier as much as 3% in the classification of training data. When ground reference data is used, we could get poor result from both of classification methods, but we could reach conclusion that the classification result of Neural Network Classifier is superior to the classification result of Maximum Likelihood Classifier as much as 10%.

  • PDF

Land Cover Classification of Coastal Area by SAM from Airborne Hyperspectral Images (항공 초분광 영상으로부터 연안지역의 SAM 토지피복분류)

  • LEE, Jin-Duk;BANG, Kon-Joon;KIM, Hyun-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • Image data collected by an airborne hyperspectral camera system have a great usability in coastal line mapping, detection of facilities composed of specific materials, detailed land use analysis, change monitoring and so forh in a complex coastal area because the system provides almost complete spectral and spatial information for each image pixel of tens to hundreds of spectral bands. A few approaches after classifying by a few approaches based on SAM(Spectral Angle Mapper) supervised classification were applied for extracting optimal land cover information from hyperspectral images acquired by CASI-1500 airborne hyperspectral camera on the object of a coastal area which includes both land and sea water areas. We applied three different approaches, that is to say firstly the classification approach of combined land and sea areas, secondly the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas, and thirdly the land area-only classification approach using atmospheric correction images and compared classification results and accuracies. Land cover classification was conducted respectively by selecting not only four band images with the same wavelength range as IKONOS, QuickBird, KOMPSAT and GeoEye satelllite images but also eight band images with the same wavelength range as WorldView-2 from 48 band hyperspectral images and then compared with the classification result conducted with all of 48 band images. As a result, the reclassification approach after decompostion of land and sea areas from classification result of combined land and sea areas is more effective than classification approach of combined land and sea areas. It is showed the bigger the number of bands, the higher accuracy and reliability in the reclassification approach referred above. The results of higher spectral resolution showed asphalt or concrete roads was able to be classified more accurately.