Abstract
The land cover over Korean peninsula was classified using a multi-temporal NOAA/AVHRR (Advanced Very High Resolution Radiometer) data. Four types of phenological data derived from the 10-day composited NDVI (Normalized Differences Vegetation Index), maximum and annual mean land surface temperature, and topographical data were used not only reducing the data volume but also increasing the accuracy of classification. Self organizing feature map (SOFM), a kind of neural network technique, was used for the clustering of satellite data. We used a decision tree for the classification of the clusters. When we compared the classification results with the time series of NDVI and some other available ground truth data, the urban, agricultural area, deciduous tree and evergreen tree were clearly classified.
이 연구에서는 극궤도 기상위성인 NOAA/AVHRR 시계열 자료를 이용하여 한반도의 지면 피복을 분류하였다. 일주기 기상위성자료로부터 구름이 없는 상태의 지면상태 자료를 획득하기 위하여 10일 간격 최대치 합성법 자료를 작성하였으며 27개의 10일주기 식생지수 자료들(겨울철 12, 1, 2월 자료 9개 제외)로부터 4개의 식생 계절성 자료를 작성하였다. 또한 위성자료로부터 분석한 연 최고 및 연평균 지면온도, 그리고 지형고도 자료를 이용하였다. 각 지면 피복에 대한 특성 자료 수집이 어렵기 때문에 여기서는 2단계 무감독 분류법을 이용하였다. 즉, 초기 입력자료는 신경망 기법의 일종인 SOFM을 이용하여 군집화한 다음 결정나무를 이용하여 각 군집을 분류하였다. 최종 분류 결과는 식생지수의 시계열과 지상 자료로 검증한 결과 대도시, 농지, 낙엽수림 및 상록수림 등 우리 나라의 지면 피복을 개략적으로 잘나타내고 있는 것으로 판단된다.