• 제목/요약/키워드: Laminated composite plates

검색결과 395건 처리시간 0.022초

A novel four variable refined plate theory for laminated composite plates

  • Merdaci, Slimane;Tounsi, Abdelouahed;Bakora, Ahmed
    • Steel and Composite Structures
    • /
    • 제22권4호
    • /
    • pp.713-732
    • /
    • 2016
  • A novel four variable refined plate theory is proposed in this work for laminated composite plates. The theory considers a parabolic distribution of the transverse shear strains, and respects the zero traction boundary conditions on the surfaces of the plate without employing shear correction coefficient. The displacement field is based on a novel kinematic in which the undetermined integral terms are used, and only four unknowns are involved. The analytical solutions of antisymmetric cross-ply and angle-ply laminates are determined via Navier technique. The obtained results from the present model are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories reported in the literature. It can be concluded that the developed theory is accurate and simple in investigating the bending and buckling responses of laminated composite plates.

Discrete Optimization for Vibration Design of Composite Plates by Using Lamination Parameters

  • Honda, Shinya;Narita, Yoshihiro;Sasaki, Katsuhiko
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.297-314
    • /
    • 2009
  • A design method is proposed to optimize the stacking sequence of laminated composite plates for desired vibration characteristics. The objective functions are the natural frequencies of the laminated plates, and three types of optimization problems are studied where the fundamental frequency and the difference of two adjacent frequencies are maximized, and the difference between the target and actual frequencies is minimized. The design variables are a set of discrete values of fiber orientation angles with prescribed increment in the layers of the plates. The four lamination parameters are used to describe the bending property of a symmetrically laminated plate, and are optimized by a gradient method in the first stage. A new technique is introduced in the second stage to convert from the optimum four lamination parameters into the stacking sequence that is composed of the optimum fiber orientation angles of all the layers. Plates are divided into sub-domains composed of the small number of layers and designed sequentially from outer domains. For each domain, the optimum angles are determined by minimizing the errors between the optimum lamination parameters obtained in the first step and the parameters for all possible discrete stacking sequence designs. It is shown in numerical examples that this design method can provide with accurate optimum solutions for the stacking sequence of vibrating composite plates with various boundary conditions.

적층복합판의 충격에 의한 모재균열 및 층간분리에 관한 연구 (Matrix Cracking and Delmaination in Laminated Composite Plates Due to Impact)

  • 김문생;박승범
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.317-326
    • /
    • 1997
  • An investigation was performed to study the matrix cracking and delamination in laminated composite plates due to transverse impact. A model was developed for predicting the initiation of the matrix cracking and the shape and size of impact-induced delamination in laminated composite plates resulting from the ballistic impact. The model consists of a stress analysis and a failure analysis. A transient finite element analysis which was based on the higher-order shear deformation theory was adopted for calculating the stresses inside the laminated composite plates during impact. A failure analysis was used to predict the initial intraply matrix cracking and the shape and size of the interface delamination in the laminates. As a results, a shear matrix cracking which was governed by the transverse interlaminar shear stress occured at the middle layer near the midplane of laminates and a bending matrix cracking which was governed by the transverse inplane stress occured at the bottom layer near the surface of laminates. In a thick laminates, a shear matrix cracking generated first at the middle layer of laminates, but in a thin laminates, a bending matrix cracking generated first at the bottom layer of laminates.

Vibration of angle-ply laminated composite circular and annular plates

  • Mercan, Kadir;Ebrahimi, Farzad;Civalek, Omer
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.141-154
    • /
    • 2020
  • In the present paper, free vibration analysis of angle-ply laminated composite annular and circular plates is performed by numerical methods. First-order shear deformation plate theory is used for kinematic relations. The related governing equations of motion are discretized via differential quadrature and discrete singular convolution methods. Frequency values are obtained for different lamina scheme, thickness-to-radius ratio, and mode numbers. The advantages and accuracy of these two methods are also tested in detail.

강성 저하된 적층복합판의 비선형 해석 (Non-linear Analysis of Laminated Composite Plates with Multi-directional Stiffness Degradation)

  • 한성천;박원태;이원홍
    • 한국산학기술학회논문지
    • /
    • 제11권7호
    • /
    • pp.2661-2669
    • /
    • 2010
  • 본 연구에서는 매트릭스가 손상된 적층복합판의 비선형 거동을 분석하기 위한 일차전단변형이론에 기초한 유한요소 정식을 유도하였다. Duan and Yao가 제안한 Matrix 균열의 강성 치환 방법을 적용하여 다방향 강성저하식을 구성하였다. 발생된 Matrix 균열은 탄성계수, 전단탄성계수 및 프아송비의 변화로 표현할 수 있으며, 이를 이용하여 판의 국부 강성 변화를 예측할 수 있다. 가정된 자연변형률 방법을 적용한 쉘요소를 이용하여 면내 및 전단잠김 현상이 발생하지 않았다. 적층복합판의 선형해석은 물론 비선형 해석결과들은 참고문헌의 결과들에 수렴되었다. 매트릭스가 손상된 적층복합판의 해석 결과들은 향후 연구에 비교자료로 활용될 수 있을 것이다.

얇은 적층 평판의 비선형 불규칙 진동해석 (Nonlinear Random Vibration Analysis of Thin Laminated Plates)

  • 강주원
    • 한국공간구조학회논문집
    • /
    • 제1권1호
    • /
    • pp.109-115
    • /
    • 2001
  • Composite materials also known as fiber reinforced plastics have been developed and used in many engineering applications due to their outstanding mechanical properties. Laminated plates as structural components that are made of in composite material are widely used. Therefore, nonlinear response of laminated composite plates modeled with finite elements and excited by stochastic loading is studied. The classical laminated plate theory is used to account for the variation of strains through the thickness for modeling laminated thin plates. Approximate nonlinear random vibration analysis is performed using the method of equivalent linearization to account for material non-linearity.

  • PDF

On buckling analysis of laminated composite plates using a nonlocal refined four-variable model

  • Shahsavari, Davood;Karami, Behrouz;Janghorban, Maziar
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.173-187
    • /
    • 2019
  • This study is concerned with the stability of laminated composite plates modelled using Eringen's nonlocal differential model (ENDM) and a novel refined-hyperbolic-shear-deformable plate theory. The plate is assumed to be lying on the Pasternak elastic foundation and is under the influence of an in-plane magnetic field. The governing equations and boundary conditions are obtained through Hamilton's principle. An analytical approach considering Navier series is used to fine the critical bucking load. After verifying with existing results for the reduced cases, the present model is then used to study buckling of the laminated composite plate. Numerical results demonstrate clearly for the first time the roles of size effects, magnetic field, foundation parameters, moduli ratio, geometry, lay-up numbers and sequences, fiber orientations, and boundary conditions. These results could be useful for designing better composites and can further serve as benchmarks for future studies on the laminated composite plates.

Free vibration analysis of stiffened laminated plates using layered finite element method

  • Guo, Meiwen;Harik, Issam E.;Ren, Wei-Xin
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.245-262
    • /
    • 2002
  • The free vibration analysis of stiffened laminated composite plates has been performed using the layered (zigzag) finite element method based on the first order shear deformation theory. The layers of the laminated plate is modeled using nine-node isoparametric degenerated flat shell element. The stiffeners are modeled as three-node isoparametric beam elements based on Timoshenko beam theory. Bilinear in-plane displacement constraints are used to maintain the inter-layer continuity. A special lumping technique is used in deriving the lumped mass matrices. The natural frequencies are extracted using the subspace iteration method. Numerical results are presented for unstiffened laminated plates, stiffened isotropic plates, stiffened symmetric angle-ply laminates, stiffened skew-symmetric angle-ply laminates and stiffened skew-symmetric cross-ply laminates. The effects of fiber orientations (ply angles), number of layers, stiffener depths and degrees of orthotropy are examined.

압전 세라믹 감지기/작동기와 점탄성 재료를 이용한 지능형 복합 적층판의 진동 제어 (Vibration Control of Smart Laminated Composite Plates Using Piezoceramic Sensor/Actuators and Viscoelastic Material)

  • 강영규;서경민;이시복
    • 한국소음진동공학회논문집
    • /
    • 제11권4호
    • /
    • pp.37-42
    • /
    • 2001
  • Active vibration control of laminated composite plates has been carried out to design structure with maximum possible damping capacity, using piezoceramic sensor/actuators and passive constrained-layer damping treatment. The equations of motion are derived for symmetrical, multi-layer laminated plates. The damping ratio(ζ) and modal damping(2ζ$\omega$) of the first bending and torsional modes are calculated by means of iterative complex eigensolution method for both passive and active vibration control. This paper addresses a design strategy of laminated composite plate under structural vibrations.

  • PDF

Buckling and Post buckling Analysis of Composite Plates with Internal Flaws

  • Sreehari, VM;Maiti, DK
    • International Journal of Aerospace System Engineering
    • /
    • 제2권2호
    • /
    • pp.19-23
    • /
    • 2015
  • This work deals with the study of buckling and post buckling characteristics of laminated composite plates with and without localized regions of damage. The need of a detailed study on Finite Element Analysis of buckling and post buckling of laminated composite structures considering various aspects enhances the interest among researchers. Mathematical formulation is developed for damaged composite plates using a finite element technique based on Inverse Hyperbolic Shear Deformation Theory. This theory satisfies zero transverse shear stresses conditions at the top and bottom surfaces of the plate and provides a non-linear transverse shear stress distribution. Damage modeling is done using an anisotropic damage formulation, which is based on the concept of stiffness change. The structural elements are subjected to in-plane loading. The computer program is developed in MATLAB environment. The numerical results are presented after through validation of developed finite element code. The effect of damage on buckling and post buckling has been carried out for various parameters such as amount of percentage of damaged area, damage intensity, etc. The results show that the presence of internal flaws will significantly affect the buckling characteristics of laminated composite plates. The outcomes and remarks from this work will assist to address some key issues concerning composite structures.