• Title/Summary/Keyword: Laminated Film

Search Result 158, Processing Time 0.026 seconds

Improvement of Electrical and Mechanical Characteristics of Organic Thin Film Transistor with Organic/Inorganic Laminated Gate Dielectric (유연성 유기 박막트랜지스터 적용을 위한 다층 게이트 절연막의 전기적 및 기계적 특성 향상 연구)

  • Noh, H.Y.;Seol, Y.G.;Kim, S.I.;Lee, N.E.
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • In this work, improvement of mechanical and electrical properties of gate dielectric layer for flexible organic thin film transistor (OTFT) devices was investigated. In order to increase the mechanical flexibility of PVP (poly(4-vinyl phenol) organic gate dielectric, a very thin inorganic $HfO_2$ layers with the thickness of $5{\sim}20nm$ was inserted in between the spin-coated PVP layers. Insertion of the inorganic $HfO_2$ in the laminated organic/inorganic structure of PVP/$HfO_2$/PVP layer led to a dramatic reduction in the leakage current compared to the pure PVP layer. Under repetitive cyclic bending, the leakage current density of the laminated PVP/$HfO_2$/PVP layer with the thickness of 20-nm $HfO_2$ layer was not changed, while that of the single PVP layer was increased significantly. Mechanical flexibility tests of the OTFT devices by cyclic bending with 5 mm bending radius indicated that the leakage current of the laminated PVP/$HfO_2$(20 nm)/PVP gate dielectric in the device structure was also much smaller than that of the single PVP layer.

Experimental Study and Finite Element Analysis about Vehicle Laminated Glass Subject to Headform Impact (머리모형 충돌에 의한 자동차 접합유리의 실험적 연구 및 유한요소해석)

  • Choi, Jihun;Oh, Wontek;Kim, Jonghyuk;Park, Jongchan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.374-379
    • /
    • 2017
  • In vehicle to pedestrian accidents, cracks occur in the vehicle laminated glass due to impact of a pedestrian's head. In this study, FMH(Free Motion Headform) was used to experiment on and analyze the crack patterns on a vehicle laminated glass that collides with an adult headform at speeds of 20 km/h, 30 km/h, and 40 km/h, respectively. Applying the acquired experimental data and material property of the vehicle laminated glass to the structural analysis program LS-Dyna, we could develop the FE model of vehicle laminated glass similar to real vehicle laminated glass. We could estimate the head impact velocity and pedestrian's vehicle impact velocity using the Madymo program.

Freshness Preserving of Table Grape using Corrugated Paperboard Box Laminated with Functional MA Film (기능성 골판지 상자로 포장한 포도의 신선도 유지효과)

  • 박형우;박종대;김태규;김기정
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.331-334
    • /
    • 1998
  • Weight loss of table Grape packed with control(Corrugated paperboard box), LDPE, CE(MA film masterbatched by ceramic powder treated cemical reagent) and FC box(laminated by CE film pouch) at 25 C after 10 days were 5.6%, 0.4%, 0.6%, and 0.7%, respectively. Weight loss of control was 7.29times higher than that of FC box. Total ascorbic acid content(TAA) of table grape after 10 days was 3.42 mg% for control, was 5.33 for LDPE and 5.14mg% for CE, 4.98mg% for FC. TAA of LDPE and CE showed to higher than that of control, especially TAA of FC was 33% higher than that of control. Titratable acid of LDPE and CE was high compare to control, and acidity of FC was 6% higher than that of control. References in overall appearance of LDPE, CE and FC were better than that of control. Corrugated paperboard box(FC) laminated with functional MA film showed to be able to used as packaging box of table grape.

  • PDF

Case Study on 5kWp Transparent Thin-Film BIPV System (5kW급 투광형 박막 BIPV시스템의 실증연구)

  • An, Young-Sub;Kim, Sung-Tae;Lee, Sung-Jin;Song, Jong-Hwa;Hwang, Sang-Kun;Yoon, Jong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.29-35
    • /
    • 2010
  • This study has been carried out empirical research on Transparent Thin-film BIPV modules, BIPV modules installed on the exterior of the building are applied a laminated module 1kWp, double-glazing module 3kWp and triple-glazing module 1kWp. Applied to the total capacity of BIPV modules are 5kWp. In this study, design and construction process of BIPV systems is presented. In addition, through monitoring of the BIPV system, the temperature and the power characteristics of each module were analyzed. During the measurement period, the module temperature measurement results, the maximum surface temperature of $51.5^{\circ}C$ triple-glazing BIPV module showed the highest, followed by double-glazing BIPV module $49.1^{\circ}C$, $44.7^{\circ}C$ laminated modules, respectively. Power output results, the daily average double-layer modules showed 4.10kWh/day, triple-glazing module 1.57kWh, respectively 1.81kWh laminated modules. In particular, the power efficiency of triple-glazing BIPV module was lower than the power efficiency of the laminated BIPV module. This phenomenon is considered to be affected by the module temperature. In the future, BIPV modules in this study the relationship between module temperature and power characteristics plans to identify.

Study on the Atomic Layer Deposition System and Process of the MgO Thin Layer for the Thin Film Encapsulation of OLED (OLED의 Thin Film Encapsulation을 위한 MgO 박막의 원자층 증착 장치 및 공정에 관한 연구)

  • Cho, Eou Sik;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.22-26
    • /
    • 2021
  • Thin-film encapsulation (TFE) technology is most effective in preventing water vapor and oxygen permeation in the organic light emitting diodes (OLED). Of those, a laminated structure of Al2O3 and MgO were applied to provide efficient barrier performance for increasing the stability of devices in air. Atomic layer deposition (ALD) method is known as the most promising technology for making the laminated Al2O3/MgO and is used to realize a thin film encapsulation technology in organic light-emitting diodes. Atomic layer deposited inorganic films have superior barrier performance and have advantages of excellent uniformity over large scales at relatively low deposition temperatures. In this study, the control system of the MgCP2 precursor for the atomic layer deposition of MgO was established in order to deposit the MgO layer stably by the injection time of second level and the stable heating temperature. The deposition rate was obtained stably to be from 4 to 10 Å/cycle using the injection pulse times ranging from 3 to 12 sec and a substrate temperature ranging from 80 to 150 ℃.

Development of Edible Laminate-Composite Films Using Defatted Mustard Meal and Whey Protein Isolate (탈지겨자씨와 유청단백질을 재료로 사용한 가식성 적층필름의 개발)

  • Kim, Dayeon;Park, Ji Won;Noh, Bong-Soo;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.6
    • /
    • pp.711-715
    • /
    • 2012
  • A laminate-composite film was developed using industry co-products of defatted mustard meal (DMM) and whey protein isolate (WPI). An individually prepared DMM-based film (DMM film) and a WPI-based film (WPI film) were thermally laminated at $130^{\circ}C$ at a rate of 30 cm/min. Microscopic images exhibited that the DMM film and the WPI film were continuously attached in the laminate without void spaces. The tensile strength, elongation at break, and water vapor permeability for the laminate were 0.7MPa, 4.0%, and $6.9g{\cdot}mm/kPa/h/m^2$, respectively. Stretchability and heat seal strength of the laminate were higher than those of the un-laminated DMM film. The film layers of the laminate were physically overlapped, not forming new biopolymer units induced by molecular interactions. The opportunity for DMM films to be used as food packaging materials for wrapping and sealing could be increased by thermal lamination with WPI films, which improves the stretchability and heat sealability of DMM films.

Basic and Mechanical Properties by Film Type to Minimize the Sound Pressure Level of PTFE Laminated Vapor-permeable Water-repellent Fabrics (PTFE(Polytetrafluoroethylene) 라미네이팅 투습발수직물의 총음압 최소화를 위한 필름 타입 별 기본 특성과 역학 특성)

  • Lee, Kyu-Lin;Lee, Jee-Hyun;Jin, Eun-Jung;Yang, Youn-Jung;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.641-647
    • /
    • 2012
  • This study investigates the sound properties of fabric frictional sound (SPL, ${\Delta}L$, ${\Delta}f$) according to the film type of PTFE laminated vapor-permeable water-repellent fabrics in order to understand the relationship between SPL and the basic properties of fabrics such as layer, yarn type, and thickness of fiber. This study accesses their mechanical properties and determines how to control them to minimize SPL. Eight PTFE laminated water-repellent fabrics, composed of four different film types (A, B, C, D) and with two different fabrics, were used as test specimens. Frictional sounds generated at 1.21m/s were recorded by using a fabric sound generator and SPLs were analyzed through Fast Fourier Transformation (FFT). The mechanical properties of fabrics were measured by KES-FB. The SPL value was lowest at 74.4dB in film type A and highest as 85.5dB in type D. Based on ANOVA and post-hoc test, specimens were classified into less Loud Group (A, B) and Loud Group (C, D). It was shown that SPL was lower when 2 layer (instead of 3 layer), filament yarn than staple, and thin fiber than thick were used. In Group I, shearing properties (G, 2HG5), geometrical roughness (SMD), compressional properties (LC, RC) and weight (W) showed high correlation with SPL however, elongation (EM) and shear stiffness (G) did with SPL in Group II.

Freshness Preserving of 'Shingo' Pear using Corrugated Paperboard Box Laminated with Functional MA Film (기능성 골판지 상자로 포장한 '신고' 배의 신선도 유지효과)

  • 박형우;김동만;김상희;박종대;김기정
    • Food Science and Preservation
    • /
    • v.5 no.4
    • /
    • pp.335-338
    • /
    • 1998
  • Weight loss of fear packed with corrugated paperboard box(FC) laminated with functional MA film after 60 days storage at 5$^{\circ}C$ was 1.0%, and that of LDPE, CE film was 0.6-0.7%, while that of control(Corrugated Paperboard box) was 2.8%. Total ascorbic acid content of pear ill MA films and FC package was higher than that of control. Titratable acid of control changed 37%, but that of the others packages changed below 27%. Soluble solid content of control changed 27%, while the others changed below 2%. Reference in overall appearence of pear were not found among packaging methods. Corrugated paperboard box(FC) laminated with Functional MA film can be used as packaging material for pear packaging.

  • PDF