• Title/Summary/Keyword: Laminated

Search Result 2,086, Processing Time 0.031 seconds

Discrete Optimization for Vibration Design of Composite Plates by Using Lamination Parameters

  • Honda, Shinya;Narita, Yoshihiro;Sasaki, Katsuhiko
    • Advanced Composite Materials
    • /
    • v.18 no.4
    • /
    • pp.297-314
    • /
    • 2009
  • A design method is proposed to optimize the stacking sequence of laminated composite plates for desired vibration characteristics. The objective functions are the natural frequencies of the laminated plates, and three types of optimization problems are studied where the fundamental frequency and the difference of two adjacent frequencies are maximized, and the difference between the target and actual frequencies is minimized. The design variables are a set of discrete values of fiber orientation angles with prescribed increment in the layers of the plates. The four lamination parameters are used to describe the bending property of a symmetrically laminated plate, and are optimized by a gradient method in the first stage. A new technique is introduced in the second stage to convert from the optimum four lamination parameters into the stacking sequence that is composed of the optimum fiber orientation angles of all the layers. Plates are divided into sub-domains composed of the small number of layers and designed sequentially from outer domains. For each domain, the optimum angles are determined by minimizing the errors between the optimum lamination parameters obtained in the first step and the parameters for all possible discrete stacking sequence designs. It is shown in numerical examples that this design method can provide with accurate optimum solutions for the stacking sequence of vibrating composite plates with various boundary conditions.

A Study on the Oil/Water Separation Efficiency of Laminated Plate Type Oily water Separator with Inclined Angle (경사각을 갖는 적층판식 유수분리기의 유수분리 효율에 관한 연구)

  • 한원희;김준효;최민선
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.365-374
    • /
    • 2001
  • Its a tendency to strengthen related international was as the importance on marine oil pollution recently becomes the issue. According to the regulation of IMO, oil discharge from ships is allowed under 15PPM only and oil filtering equipment is essential. Oily water separator of laminated plate type which is one of gravity type separator can be use as assistant equipment for the oil filtering system to meet the present IMO standard, because it fits well to process large amount of rich oil with high specific gravity. The purpose of this paper is to investigate an efficiency of oil/water separation with the characteristics of laminated plate arrangement. The analyse of oil contents for oil-water mixture were carried out in order to find an efficiency of oil/water separation and an experimental study was simultaneously carried out to investigate internal flow characteristics of separator by visualization method and PIV(Particle Image Velocimetry) measurement at three spaces of plates for 5, 10 and 15 mm with variation of inlet flow rates of $0.25m^3$/h and $0.5m^3$/h. The experimental results showed that the space of the plates acts a significant role in the separating process.

  • PDF

Thermal Stress Due to a Hot - Spot on the Laminated Plate in High Temperature Superconducting Fault Current Limiter (적층판으로 제작된 고온초전도 한류기에 발생한 국부적 열폭주 점에 대한 열응력 해석)

  • Yang, Kyeong-Jin;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.705-712
    • /
    • 2003
  • Analysis for the thermal stress distribution in the laminated plates containing a hot-spot(local heating region) is performed. It is assumed that the local heating region induces only mechanical stress by the thermal expansion but effect of the thermal conduction is neglected. The region is regarded equivalent to a homogeneous inclusion expanding in a laminated medium. As an example, Au/YBCO/Al$_2$O$_3$laminate which is often employed for High Temperature Superconducting Fault Current Limiter(HTS FCL) has been analyzed. Effects of heat input, thickness of each layer and the got spot size upon the stress distribution in the hot-spot have been investigated. For a constant heat generation into the hot-spot, as the thickness of the Al$_2$O$_3$substrate increases, the stress in the YBCO layer is peculiarly oscillated, and the curvature of laminate has a maximum at a certain thickness of the Al$_2$O$_3$.

Residual Stress on Concentric Laminated Fibrous Al2O3-ZrO2 Composites on Prolonged High Temperature Exposure

  • Sarkar, Swapan Kumar;Lee, Byong Taek
    • Korean Journal of Materials Research
    • /
    • v.23 no.9
    • /
    • pp.531-536
    • /
    • 2013
  • This paper investigates the effect of prolonged high temperature exposure on concentric laminated $Al_2O_3-ZrO_2$ composites. An ultrafine scale microstructure with a cellular 7 layer concentric lamination with unidirectional alignment was fabricated by a multi-pass extrusion method. Each laminate in the microstructure was $2-3{\mu}m$ thick. An alternate lamina was composed of 75%$Al_2O_3$-(25%m-$ZrO_2$) and t-$ZrO_2$ ceramics. The composite was sintered at $1500^{\circ}C$ and subjected to $1450^{\circ}C$ temperature for 24 hours to 72 hours. We investigated the effect of long time high temperature exposure on the generation of residual stress and grain growth and their effect on the overall stability of the composites. The residual stress development and its subsequent effect on the microstructure with the edge cracking behavior mechanism were investigated. The residual stress in the concentric laminated microstructure causes extensive micro cracks in the t-$ZrO_2$ layer, despite the very thin laminate thickness. The material properties like Vickers hardness and fracture toughness were measured and evaluated along with the microstructure of the composites with prolonged high temperature exposure.

Switching Transient Analysis and Design of a Low Inductive Laminated Bus Bar for a T-type Converter

  • Wang, Quandong;Chang, Tianqing;Li, Fangzheng;Su, Kuifeng;Zhang, Lei
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1256-1267
    • /
    • 2016
  • Distributed stray inductance exerts a significant influence on the turn-off voltages of power switching devices. Therefore, the design of low stray inductance bus bars has become an important part of the design of high-power converters. In this study, we first analyze the operational principle and switching transient of a T-type converter. Then, we obtain the commutation circuit, categorize the stray inductance of the circuit, and study the influence of the different types of stray inductance on the turn-off voltages of switching devices. According to the current distribution of the commutation circuit, as well as the conditions for realizing laminated bus bars, we laminate the bus bar of the converter by integrating the practical structure of a capacitor bank and a power module. As a result, the stray inductance of the bus bar is reduced, and the stray inductance in the commutation circuit of the converter is reduced to more than half. Finally, a 10 kVA experimental prototype of a T-type converter is built to verify the effectiveness of the designed laminated bus bar in restraining the turn-off voltage spike of the switching devices in the converter.

Ergonomic Design and Evaluation of Carrying Handles for Bag (포대 운반손잡이의 인간공학적 디자인 및 평가)

  • Jung, Hwa-S.;Park, Ah-Sung;Jung, Hyung-Shik
    • IE interfaces
    • /
    • v.17 no.1
    • /
    • pp.46-55
    • /
    • 2004
  • Various characteristics of the object being lifted are known to affect the biomechanical, physiological, and psychophysical stresses. The object characteristics to be considered in the design process of lifting tasks are weight, shape, stiffness, and availability of handles and similar coupling devices. In this study, a prototype Polypropylene laminated bag with carrying handles was designed to decrease the physical stress of people who handle these bags. Physiological and psychophysical approaches as well as subjective ratings were applied to evaluate the effects of handles provided on the designed PP laminated bag. Statistical analysis showed that the VO2, heart rate, blood pressure, and Borg-RPE score for PP laminated fertilizer bag with carrying handles were significantly lower than those bags without handles. Moreover, Maximum Acceptable Lifting Endurance Time(MALET) measure, newly developed in this study, for bags with handles was significantly higher than those for bags without handles. It is thus recommended that the various types of bags and boxes be equipped with handles to reduce the musculoskeletal, physiological, psychophysical, and subjective perceived stresses.

Shape Optimization of Three-Dimensional Cutouts in Laminated Composite Plates Using Solid Element (솔리드 요소를 이용한 적층복합재 구멍의 형상 최적화)

  • 한석영;마영준
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.4
    • /
    • pp.16-22
    • /
    • 2004
  • Shape optimization was performed to obtain the precise shape of cutouts including the internal shape of cutouts in laminated composite plates by three dimensional modeling using solid element. The volume control of the growth-strain method was implemented and the distributed parameter chosen as Tsai-Hill fracture index for shape optimization. The volume control of the growth-strain method makes Tsai-Hill failure index at each element uniform in laminated composites under the initial volume. Then shapes optimized by Tsai-Hill failure index were compared with those of the initial shapes for the various load conditions and cutouts. The following conclusions were obtained in this study (1) It was found that growth-strain method was applied efficiently to shape optimization of three dimensional cutouts in a laminated composite plate, (2) The optimal shapes on the various load conditions and cutouts were obtained, (3) The maximum Tsai-Hill failure index was reduced up to 67% when shape optimization was performed under the initial volume by volume control of growth-strain method.

Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model

  • Sharma, Nitin;Mahapatra, Trupti R.;Panda, Subrata K.;Mehar, Kulmani
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.629-639
    • /
    • 2018
  • In this paper, the vibroacoustic responses of baffled laminated composite sandwich flat panel structure under the influence of harmonic excitation are studied numerically using a novel higher-order coupled finite-boundary element model. A numerical scheme for the vibrating plate has been developed in the frame work of the higher-order mid-plane kinematics and the eigen frequencies are obtained by employing suitable finite element steps. The acoustic responses are then computed by solving the Helmholtz wave equation using boundary element method coupled with the structural finite elements. The proposed scheme has been implemented via an own MATLAB base code to compute the desired responses. The validity of the present model is established from the conformance of the current natural frequencies and the radiated sound power with the available benchmark solutions. The model is further utilized to scrutinize the influence of core-to-face thickness ratio, modular ratio, lamination scheme and the support condition on the sound radiation characteristics of the vibrating sandwich flats panel. It can be concluded that the present scheme is not only accurate but also efficient and simple in providing solutions of the coupled vibroacoustic response of laminated composite sandwich plates.

3-D finite Element Analysis for Thermo-Mechanical Behavior of Laminated Carbon-Phenolic Composite Ring for Rocket Nozzle Insulator (로켓 노즐 내열부품용 탄소-페놀 복합재 적층링의 열기계적 거동에 대한 3차원 유한요소 해석)

  • Lee, Sun-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.47-53
    • /
    • 2006
  • In this paper, the thermal insulator structure of a real rocket which is fabricated in a way that laminated composite rings are connected in series is analyzed using 3-dimensional axisymmetric finite element models. Simulation of cowl zone using a real operating conditions provides that the stress distribution in the laminated composite ring is largely influenced by ply-angles, axial dimensions, and boundary conditions. Notably the plylift that is the precursor to the wedge-out occurs in the ring-to-ring bonding region. It is hypothesized that after the plylift the wedge is dropped out due to the shear stresses in the ply-angle direction and axial compressive stresses.

Marguerre shell type secant matrices for the postbuckling analysis of thin, shallow composite shells

  • Arul Jayachandran, S.;Kalyanaraman, V.;Narayanan, R.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.1
    • /
    • pp.41-58
    • /
    • 2004
  • The postbuckling behaviour of thin shells has fascinated researchers because the theoretical prediction and their experimental verification are often different. In reality, shell panels possess small imperfections and these can cause large reduction in static buckling strength. This is more relevant in thin laminated composite shells. To study the postbuckling behaviour of thin, imperfect laminated composite shells using finite elements, explicit incremental or secant matrices have been presented in this paper. These incremental matrices which are derived using Marguerre's shallow shell theory can be used in combination with any thin plate/shell finite element (Classical Laminated Plate Theory - CLPT) and can be easily extended to the First Order Shear deformation Theory (FOST). The advantage of the present formulation is that it involves no numerical approximation in forming total potential energy of the shell during large deformations as opposed to earlier approximate formulations published in the literature. The initial imperfection in shells could be modeled by simply adjusting the ordinate of the shell forms. The present formulation is very easy to implement in any existing finite element codes. The secant matrices presented in this paper are shown to be very accurate in tracing the postbuckling behaviour of thin isotropic and laminated composite shells with general initial imperfections.