• Title/Summary/Keyword: Lambert W Function

Search Result 8, Processing Time 0.03 seconds

The solar cell modeling using Lambert W-function (Lambert W 함수를 이용한 태양전지 모델링)

  • Bae, Jong-Guk;Kang, Gi-Hwan;Kim, Kyung-Soo;Yu, Gwon-Jong;Ahn, Hyung-Geun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.278-281
    • /
    • 2011
  • This system can predict the maximum output about all illumination levels so that the PV system designer can design the system having the best efficiency. For the output prediction exact about the solar cell, that is the device the basis most in the PV system, the basis has to be in order to try this way. The solution based on Lambert W-function are presented to express the transcendental current-voltage characteristic containing parasitic power consuming parameters like series and shunt resistances. A simple and efficient method for the extraction of a single current-voltage (I-V) curve under the constant illumination level is proposed. With the help of the Lambert W function, the explicit analytic expression for I is obtained. And the explicit analytic expression for V is obtained. This analytic expression is directly used to fit the experimental data and extract the device parameters. The I-V curve of the solar cell was expressed through the modeling using Lambert W-function and the numerical formula where there is the difficulty could be logarithmically expressed This method expresses with the I-V curve through the modeling using Lambert W-function which adds other loss ingredients to the equation2 as to the research afterward. And the solar cell goes as small and this I-V curve can predict the power penalty in the system unit.

  • PDF

The Lambert W Function in the Design of Minimum Mean Square-Error Quantizers for a Laplacian Source (램버트 W 함수를 사용한 라플라스 신호의 최소 평균제곱오차 양자화)

  • 송현정;나상신
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.333-336
    • /
    • 2001
  • This paper reports that the Lambert W function applies to a non-iterative design of minimum mean square-error scalar quantizers for a Laplacian source. The contribution of the paper is in the reduction of the time needed for the design and the increased accuracy in resulting quantization points and thresholds, because the algorithm is non-iterative and the Lambert W function can be evaluated as accurately as desired.

  • PDF

Stabilizing Controller Design for Time-delay Singularly Perturbed Systems by H Norm and Lambert W Function (시간지연을 갖는 특이 섭동 시스템에서 H놈과 램버트 W 함수를 이용한 안정화 제어기 설계)

  • Kim, Beomsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.8
    • /
    • pp.1144-1150
    • /
    • 2013
  • The stabilizing controller design problem of time-delay singularly perturbed systems is considered. The proposed approach is based on the $H_{\infty}$ norm and the composite control method. A sufficient condition for the stability of the time-delay slow subsystem is presented. Using this condition, we can construct the composite control law for the time-delay singularly perturbed system and analysis the system by the matrix Lambert W function. Illustrated examples are presented to demonstrate the validity and applicability of the proposed method.

Stabilizing Controller Design for Time-Delay Pure Singularly Perturbed Systems via Lambert W Function (램버트 W 함수를 이용한 시간지연 순수 특이 섭동 시스템 안정화 제어기 설계)

  • Kim, Beom-Soo;Ahn, Soo-Whan
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.120-127
    • /
    • 2014
  • In this study, Design methods of stabilizing controller for time-delay pure singularly perturbed systems are proposed. Based on the Chang transformation and Lambert W function, we decompose the time-delayed pure singularly perturbed systems into completely decoupled subsystems and derive sufficient stability conditions for $2{\times}2$ time-delayed pure singularly perturbed systems. An illustrated example is presented to demonstrate the validity and applicability of the proposed methods.

The Lambert W Function in the Design of Minimum Mean Square-Error Quantizers for a Laplacian Source (램버트 W 함수를 사용한 라플라스 신호의 최소 평균제곱오차 양자화)

  • 송현정;나상신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.6A
    • /
    • pp.524-532
    • /
    • 2002
  • This paper reports that the Lambert W function applies to a non-iterative design of minimum mean square-error scalar quantizers for a Laplacian source. Specifically, it considers a non-iterative design algorithm for optimum quantizers for a Laplacian source; it finds that the solution of the recursive nonlinear equation in the non-iterative design is elegantly expressed in term of the principal branch of the Lambert W function in a closed form; and it proves that the non-iterative algorithm applies only to exponential or Laplacian sources. The contribution of the paper is in the reduction of the time needed for the design and the increased accuracy in resulting quantization points and thresholds, because the algorithm is non-iterative and the Lambert W function can be evaluated as accurately as desired. Also, numerical results show how optimal quantization distortion converges monotonically to the Panter-Dite constant and help derive an approximation formula for the key parameters of optimum quantizers.

Improved Model for Maximum Power Point Tracking (MPPT) of Solar System (태양광 시스템의 최대 전력지점 추적(MPPT) 정확도 향상을 위한 모델링)

  • Lee, YoungHyun;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.114-118
    • /
    • 2022
  • The photovoltaic system is affected by various conditions such as temperature and irradiance. Because non-uniform irradiation and partial shading conditions affect the entire string of cells connected in series, a bypass diode is used to bypass the current flow normally. In order to find the maximum power point in partial shade conditions, it is necessary to estimate various methods of maximum power point tracking. In this paper, the hybrid method of MPPT using Lambert W function and perturbation & observation algorithm is proposed under partial shading conditions. The simulation results are obtained using MATLAB/Simulink and shows the improvement of the accuracy of MPPT.

Optimization of the Number of Antennas for Energy Efficiency in Massive MIMO WPCN (Massive MIMO WPCN에서 에너지 효율 향상을 위한 안테나 수 최적화 기법)

  • Han, Yonggue;Sim, Dongkyu;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.19-24
    • /
    • 2015
  • We introduce an optimization of the number of base station antennas in massive multiple-input multiple-output (MIMO) wireless powered communication network (WPCN). We use channel hardening property of massive MIMO system to approximate channel gain in terms of the number of base station antennas. Then, we find an optimal solution by partial differential and obtain a closed form solution by using Lambert-W function. The simulation results show that the approximation and the method of solving the optimization problem are reasonable, and the optimal solution of proposed scheme is almost identical to the optimal number of base station antennas by the exhaustive search method.

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.