In this paper, we define the sequence spaces: $[V,{\lambda},f,p]_0({\Delta}^r,E,u),\;[V,{\lambda},f,p]_1({\Delta}^r,E,u),\;[V,{\lambda},f,p]_{\infty}({\Delta}^r,E,u),\;S_{\lambda}({\Delta}^r,E,u),\;and\;S_{{\lambda}0}({\Delta}^r,E,u)$, where E is any Banach space, and u = ($u_k$) be any sequence such that $u_k\;{\neq}\;0$ for any k , examine them and give various properties and inclusion relations on these spaces. We also show that the space $S_{\lambda}({\Delta}^r, E, u)$ may be represented as a $[V,{\lambda}, f, p]_1({\Delta}^r, E, u)$ space. These are generalizations of those defined and studied by M. Et., Y. Altin and H. Altinok [7].