J. Korean Math. Soc. 44 (2007), No. 4, pp. 863-872

SPECTRAL LOCALIZING SYSTEMS THAT ARE
t-SPLITTING MULTIPLICATIVE SETS OF IDEALS

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain with quotient field K, A a
nonempty set of height-one maximal ¢t-ideals of D, F(A) = {I C D| I isan
ideal of D such that I ¢ P for all P € A}, and Driny={2 € K[zACD
for some A € F(A)}. In this paper, we prove that if each P € A is the
radical of a finite type v-ideal (resp., a principal ideal), then Dxpy is a
weakly Krull domain (resp., generalized weakly factorial domain) if and
only if the intersection Dr(xy = NpecaDp has finite character, if and
only if F(A) is a t-splitting set of ideals, if and only if F(A) is v-finite.

1. Introduction

Throughout this paper D will be an integral domain with quotient field K
and an ideal means an integral ideal. A nonempty set S of ideals of D is said to
be multiplicative if S is multiplicatively closed, i.e., if A, B € S implies AB € S.
Let S be a multiplicative set of ideals of D. The following overring of D

Ds ={r € K|rA C D for some A € S}

is called the S-transform of D or the generalized ring of fractions of D with
respect to S (cf. [5]). Let Sat(S) be the set of ideals C of D such that A C C for
some A € § and S+ = {B C D| B is an ideal of D such that (B +J); = D for
all J € S}. If S = Sat(S), then S is called saturated. We say that S is finitely
generated if every ideal I € S contains a finitely generated ideal which is still
in S, while § is v-finite if each t-ideal A € Sat(S) contains a finitely generated
ideal J such that J, € Sat(S). Clearly, each finitely generated multiplicative
set of ideals is v-finite, but the converse does not hold (see [11, p.124]). If A is
a nonempty set of nonzero prime ideals of D, we define

F(A) = {A C D|Ais an ideal of D such that A ¢ P for all P € A}.
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Then F(A), called a spectral localizing system, is a saturated multiplicative set
of ideals of D and Dx(ny = NpecaDp [10, Proposition 5.1.4]. If P is a prime
ideal of D, we denote F({P}) by F(P). It is obvious that F(A) = NpeaF(P).

A multiplicative subset N of D is called a t-splitting set if for each 0 £ d € D,
we have dD = (AB); for some integral ideals A and B of D, where A, NsD =
sA; for all s € N and BN N # 0 (see [1, 7]). Anderson-Anderson-Zafrullah in-
troduced the concept of t-splitting sets and proved that the ring D+ X Dy[X] is
a PVMD if and only if D is a PVMD and N is a t-splitting set {1, Theorem 2.5].
(Recall that D is a Prifer v-multiplication domain (PVMD) if each nonzero
finitely generated ideal of D is ¢-invertible.) Chang-Dumitrescu-Zafrullah fur-
ther studied ¢-splitting sets [7] and extended the notion of t-splitting sets to
multiplicative sets of ideals as follows [8]; S is a t-splitting set of ideals if every
nonzero principal ideal dD of D can be written as dD = (AB); with A € Sat(S)
and B € S*. Clearly, if S is a t-splitting set of ideals, then S* is also a t-
splitting set of ideals [8, Proposition 2]. It is proved that S is a ¢-splitting set of
ideals if and only if § is v-finite and dDg N D is t-invertible for each 0 % d € D
[8, Proposition 5]. Also, a multiplicative subset N of D is a t-splitting set if
and only if V' = {sD|s € N} is a t-splitting set of ideals (cf. [1, Corollary 2.3]).

Let A be a nonempty set of height-one maximal t-ideals of D. The purpose
of this paper is to study when F(A) is a t-splitting set of ideals. In particular,
we show that if each P € A is the radical of a finite type v-ideal (resp., principal
ideal), then D, is a weakly Krull domain (resp., generalized weakly factorial
domain) if and only if the intersection Dz(ny = NpepaDp has finite character,
if and only if N, P, --- P, = (0) for each infinite sequence (P,) of distinct
elements of A, if and only if F(A) is a t-splitting set of ideals, if and only if
t-Max(Dz(r)) = {Pr@)|P € A}, if and only if F(A) is finitely generated, if
and only if F(A) is v-finite.

We first review some notation and definitions. Let F(D) be the set of
nonzero fractional ideals of D. For each I € F(D), let I=! = {z € K|zI C D},
I, = (I7')7}, and I; = U{J,|J C I is a nonzero finitely generated fractional
ideal of D}. Obviously, if I € F(D) is finitely generated, then I, = I;. An
I € F(D) is called a divisorial ideal (resp., t-ideal) if I, = I (resp., Iy = I).
A t-ideal I is called a finite type v-ideal if I = (z1,...,2Tn)» for some (0) #
(#1,...,2,) CI. An I € F(D) is said to be t-invertible if (I171), = D. It is
known that if I is t-invertible, then I; is a finite type v-ideal. Let t-Max(D)
be the set of ideals maximal among proper integral t-ideals of D. It is well
known that each ideal P € ¢t-Max(D) is a prime ideal, t-Max(D) # 0 if D is
not a field, and D = Npesmax(p)Dp. We say that an ideal P € t-Max(D) is a
mazimal t-ideal and that D has a t-dimension one, denoted by t-dim(D) = 1,
if each maximal t-ideal of D has height-one. Let X'(D) be the set of height-
one prime ideals of D; so ¢-dim(D) = 1 ¢ t-Max(D) = X'(D). Examples
of integral domains of t-dimension one include (weakly) Krull domains and
one-dimensional integral domains. For more on the v- and the t-operation, the
reader may consult [12, Sections 32 and 34].
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Let S be a multiplicative set of ideals of D. If I is a fractional ideal of D, then
Is = {z € K|zA C I for some A € S8} is a fractional ideal of Ds. In particular,
if I is a prime ideal of D, then Ig is a prime ideal of Ds. We call S* the
t-complement of S. Let A, B, Bz, C be ideals of D such that A € S, B; € S+,
and B; CC. Then D = (A+ B;); € (A+ C); C D, and hence C € S*. Also,
D = (A+ B1){(A+ B2): C ((A+ B1)«(A+ B2)e): C (A+ BiB2)e C D; so
(A+ B1Bs); = D. Thus St is a saturated multiplicative set of ideals. Also,
Sat(S) is a saturated multiplicative set of ideals. It is known that Ds = Dgay(s)
and D = Dg N Dg. [8, Lemma 7).

A nonempty family F of ideals of D is called a localizing system if

(t) IeF,Janidealof D,IC J = J € F;
(i) Ie€F,Janidealof D,(J:piD)e Fforallicl=J€F.

It can be easily shown that a localizing system is a saturated multiplicative set
of ideals [10, Proposition 5.1.1] and that if A is a nonempty set of prime ideals
of D, then F(A) is a localizing system [10, Proposition 5.1.4]. A localizing
system F is said to be spectral if F = F(A) for some nonempty set A of prime
ideals of D. The reader is referred to the papers [1, 7, 8] for ¢-splitting sets.
For more on multiplicative sets of ideals, generalized ring of fractions of D, and
localizing systems, see, for example, [5], [10, Section 5.1}, or [11].

2. Weakly Krull domains

Let R be a commutative ring with identity, and let I be an ideal of R. Then

there exist only a finite number of prime ideals of R minimal over I under one
of the following conditions;

(1) ({16, Theorem 88]) R satisfies the ascending chain condition on radical
ideals.

(2) ([13, Theorem 1.6] or [6, Theorem 2.1]) Every prime ideal of R minimal
over I is the radical of a finitely generated ideal.

As the t-operation analog, El Baghdadi showed that if D satisfies the as-
cending chain conditions on radical t-ideals, then each ¢-ideal of D has a finite
number of minimal prime ideals [9, Lemma 3.8]. The following lemma is a
generalization of El Baghdadi’s result. The proof is similar to the proofs of [6,
Theorem 2.1] and [9, Lemma 3.8], and hence omitted.

Lemma 2.1. Let I be a proper integral t-ideal of D. If every prime ideal of D
minimal over I is the radical of a finite type v-ideal, then I has only a finite
number of minimal prime ideals.

Lemma 2.2. Let A be a nonempty subset of t-Max(D) and 3 = t-Maxz(D)\ A.
(1) F(A)* = F(®).
(2) If A C X'(D) and F(A) is v-finite, then t-Maz(Dg(n)) = {Pr)|P €
A}.
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Proof. (1) (C) Let A € F(A)+. If @ € &, then Q € P for all P € A, and
hence Q € F(A). So (A+ @), = D, and since Q € t-Max(D), we have A ¢ Q.
Thus A € F(£). (D) Conversely, assume that B is an ideal of D such that
B ¢ F(A)*. Then (B+C"); & D for some C' € F(A), and since C' ¢ P for
all P € A, there exists a maximal t-ideal Q € ¥ such that B C (B + ("), C @Q;
hence B ¢ F(X). Thus F(¥) C F(A)*.

(2) (C) Let Q be a maximal t-ideal of Dry and P = QN D. Then P is
a prime ¢-ideal of D [11, Proposition 1.3]. If P & A, then P € F(A) (note
that each prime ideal in A has height-one), and since F(A) is v-finite, there
exists a finite type v-ideal I of D such that I € F(A) and I C P; s0 Q D
(UDgay)e = (Ira))o = (Dr))o = Dray [11, Propositions 1.1(a) and 1.2(b)).
This contradiction shows that P € A, and thus Q = Pr(py 5, Theorem 1.1(2)]
since £ = @ N D implies that AD ) € @ for all A € F(A). (D) Let P € A.
Since (Dg(ay) Py, = Dp [5, Theorem 1.1], we have ht(Pra)) = htP =1, and
hence Ppy) is a prime t-ideal of Dr(yy (cf. [11, Proposition 1.6(a))). Thus
Pr(a) is a maximal #-ideal of Dz (4 (see the proof of the “ C 7 case).

An integral domain D is called a weakly Krull domain if D = Npe xyp)Dp
and this intersection has finite character. One can easily show that D is a
weakly Krull domain if and anly if t-dima(D} = 1 and for each P € X(D),
P =/(a,b) for some a,b € D (cf. [4, Theorem 2.6]). Let D be a weakly Krull
domain, and Jet A be a nonempty set of prime t-ideals of D. Then F (A) is
finitely generated [11, Lemma 1.16], and hence t-Max(Dz(py) = {Pr(ay|P € A}
by Lemma 2.2(2) (cf. [11, Proposition 1.17]). We next give the main result of
this paper.

Theorem 2.3. Let A be a nonempty set of height-one mazimal t-ideals of D
such that each P € A is the radical of a finite type v-ideal. Then the following
statements are equivalent.

(1) Dx(ny is a weakly Krull domain.

(2) The intersection Dxay = NpeaDp has finite character.

(3) NPy P, = (0) for each infinite sequence (P,) of distinct elements
of A.

(4) F(A) is a t-splitting set of ideals.

(5) t-Mﬂm(D]:(A)) = {P}-(A)ﬁp e A}

(6) F(A) is finitely generated.

(7) F(A) is v-finite.

Proof. (1) = (3) This follows directly from the fact that Dp = (DF(a))Pra)
for all P € A [5, Theorem 1.1(4)]. (2) = (1) This appears in {11, Lemma 2.5].
For (2) = (6), see [11, Lemma 1.16].

(3) = (4) Suppose that N, Py -+ P, = (0) for each infinite sequence (P,)
of distinct elements of A. Let 0 # d € D. By assumption, the number of
prime ideals in A containing d is finite, say Py,..., P,. Let A; = dDp, N D and
A = (A1 st An)t~
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We first show that each A;, and hence A, is t-invertible. Note that since each
P; is of height-one, dDp, is P;Dp,-primary, and hence A; is P;-primary. Also,
note that A; is t-locally principal since P; is a maximal t-ideal. Hence it suffices
to show that each A; is of finite type [15, Corollary 2.7]. Let I; be a finitely
generated ideal of D such that /(I;): = P;. Since I; is finitely generated,
there is a positive integer m such that I™Dp, = (I;Dp,)™ C dDp,; hence
(I7")¢Dp, C ((I)¢Dp,): = (I"Dp,); C dDp, (cf. [11, Proposition 1.3] for the
second equality). Replacing I; with I, we may assume that I; Dp, C dDp,.
Let J; = (d,I;);. Then J; is a finite type v-ideal and a P;-primary ideal [4,
Lemma 2.1]. Hence (A;)q = Do = (J;)q for any Q € t-Max(D) \ {P;} and
(Ai)Pi = dDp, = (d’Ii)DPi = ((d7Ii)DPi)t = (<d7Ii)tDPi)t = (JiDPi)t 2
JiDp, 2 dDp,. Thus A; = J; [15, Proposition 2.8(3)].

Now, let B = dA™'; then dD = (AB);. We next show that A € F(A)*
and B € F(A), which means that F(A) is a t-splitting set of ideals. Note
that each A; is Pj-primary, d € A;, and P, is a maximal t-ideal of D. So
A=A A)t=A1N-NA,, andthusde A, AC D, and BCD. IfC ¢
F(A), then (A+C); =D since C £ Pforall P€ Aand A ¢ Q for all Q € t-
Max(D)\A (for AC Q= A; CQforsomei =P, =/A;, CQ= Q=P €A).
Hence A € F(A)*. Next, assume that B ¢ F(A). Then B C P for some P € A,
and since d € B, we have d € P; hence P = P; for some i. Hence B =dA™! C
Py = dAA™' C PA = d(AA™Y), = dD C (P,A); since A is t-invertible
by the above paragraph = A;Dp, = dDp, C (P;A);Dp, C ((P,A):Dp,); =
((PlA)DE)t = (PiDPiADPi)t = (‘piDPiA'iDPi)t = (HDPdePI)t = Dp, C
(P.Dp,); = Dp, = (P,Dp,);. But since ht(P,Dp,) = htP; = 1, we have Dp, C
(P.Dp,); = P,Dp, C Dp,, a contradiction. Thus B € F(A).

(4) = (5) Let © = t-Max(D) \ A. Then F(A)* = F(X) by Lemma 2.2(1),
and hence t-Max(D)NF(A)* = A. Therefore, t-Max(Dg(s)) = {Pra)|P € A}
by the remark before [8, Corollary 15].

(5) = (2) For any P € A, let I be a finite type v-ideal such that vI =
P. Since htP = 1, we have (Pr(5)): = Pr(a) [11, Proposition 1.6(a)]; so
(ID]:(A))t - (PD]:(A))t - (P}'(A))t - D]:(A). Let @ be a prime ideal of D]:(A)
minimal over (IDg(4))¢. Since I C IDgpyND € QN D and VI = P, we
have P C @ N D, and hence P = Q N D since P is a maximal t-ideal and
QN D is a t-ideal [11, Proposition 1.3]. In particular, P = Q N D implies that
ADgpny € Q for all A € F(A), and so Q = (Q N D)z(ay [5, Theorem 1.1(2)].
Therefore, Pr(yy = \/{(IDx(s))s, and since (J:Dray)t = (JDg(ay)s for any
nonzero finitely generated ideal J of D [11, Proposition 1.2(b)], Pr(a) is the
radical of a finite type v-ideal. Note that (Dz(a))px,, = Dp for all P € A [5,
Theorem 1.1]. Thus the intersection Dx(ry = NpeaDp has finite character by
Lemma 2.1.

(6) = (7) Clear. (7) = (5) See Lemma 2.2(2). O

Corollary 2.4. Let A be a nonempty set of t-invertible height-one prime ideals
of D. Then the following statements are equivalent.
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) Dg(ay s a Krull domain.

) Dr(ay s a weakly Krull domain.

) The intersection Dr(ny = NpeaDp has finite character.

) NuPy--- P, = (0) for each infinite sequence (P,) of distinct elements
of A.

) F(A) is a t-splitting set of ideals.

) t-Maz(Drs)) = {Pr(s)|P € A}.

} F(A) is finitely generated.

)

Proof. (1) = (2) is clear and (3) = (1) appears in [11, Theorem 2.9]. The
other implications are immediate consequences of Theorem 2.3 since t-invertible
prime ¢-ideals are maximal ¢-ideals [14, Proposition 1.3] and of finite type. O

An integral domain D is said to be of t-finite character if each nonzero
nonunit of D is contained in only a finite number of maximal ¢-ideals of D, i.e.,
if the intersection D = N Pet-Max(D)Dp has finite character. It is clear that a
weakly Krull domain is of ¢-finite character.

Corollary 2.5. Let A be a nonempty set of height-one mazimal t-ideals of D.
If D is of t-finite character, then F(A) is a t-splitting set of ideals.

Proof. First, note that F(A) is finitely generated [11, Proposition 1.17]. Next,
let P € A, and choose a nonzero element x € P. Since D is of t-finite character,
there are only finitely many maximal ¢-ideals of D containing z. So we can
choose an y € P such that P = |/(z,y) since htP = 1 (cf. [16, Theorem 83]).
Hence P = \/(x,y),. Thus F(A) is a t-splitting set of ideals by Theorem 2.3.

O

Note that the integral domain Z + XQ[X] does not have t-finite character,
even though F(A) is finitely generated for each nonempty subset A of prime
t-ideals (see [10, Example 8.4.7] or [11, p.129]). Our next result shows that
if t-dim(D) = 1, then D has t-finite character if and only if F(A) is finitely
generated for all nonempty subsets A of maximal ¢-ideals of D.

Corollary 2.6. The following statements are equivalent.

(1) D is a weakly Krull domain.

(2) F(A) is t-splitting for every nonempty subset A of prime t-ideals of D.

(3) t-dim(D) =1 and F(A) is finitely generated for every nonempty subset
A of prime t-ideals of D.

Proof. (1) = (2) and (3) Suppose that D is a weakly Krull domain, and let
A be a nonempty set of prime t-ideals of D. Then t-dim(D) = 1, and hence
each prime t-ideal of D is a height-one maximal t-ideal. Thus F(A) is finitely
generated (11, Proposition 1.17]. Also, since a weakly Krull domain is of ¢-finite
character, F(A) is a t-splitting set of ideals by Corollary 2.5.
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(2) = (1) Let P be a prime ideal of D minimal over a nonzero principal
ideal. Note that Dz py = Dp; so dDp N D is t-invertible for all 0 # d € D (8,
Proposition 5]. Hence D \ P is a t-splitting set [1, Corollary 2.3]). Thus D is
a weakly Krull domain [1, p.8].

(3) = (1) Let P € t-Max(D) and A = t-Max(D) \ {P}. Then P ¢ Q for all
Q € A, and hence P € F(A); so there is a finitely generated ideal I of D such
that I C Pand I € Q for all Q € A. So P = /T, since t-dim(D) = 1, and thus
the intersection D = Npecx1(pyDp has finite character by Lemma 2.1. O

An integral domain D is called a Mori domain if D satisfies the ascending
chain condition on integral divisorial ideals of D; equivalently, if each t-ideal
of D is a finite type v-ideal. It is well known, and easily verified, that a Mori
domains (and hence Noetherian domain) has t-finite character. So if D is
a Mori domain with t-dim(D)} = 1, then every spectral localizing system of
D is finitely generated by Corollary 2.6. Our next result is a restatement of
Corollary 2.6 for a Mori domain.

Corollary 2.7. The following statements are equivalent for o Mori domain D.
(1) D is a weakly Krull domain.
(2) t-dim(D) = 1.
(3) F(A) is t-splitting for every nonempty subset A of prime t-ideals of D.

3. Generalized weakly factorial domains

A nonzero element x € D is said to be primary if zD is a primary ideal, while
D is called a generalized weakly factorial domain (GWFD) if each nonzero prime
ideal of D contains a primary element (see [4]). This concept is a generalization
of the well-known property of a UFD; D is a UFD if and only if each nonzero
prime ideal of D contains a principal prime [16, Theorem 5]. It is known that
D is a GWFD if and only if ¢-dim(D) = 1 and for each P € X'(D), P = vVaD
for some a € D [4, Theorem 2.2}; so a GWFD is a weakly Krull domain. We
next give the GWFD analog of Theorem 2.3. To do this, we need a lemma.

Lemma 3.1. Let A be a nonempty set of mazimal t-ideals of D, and let P € A.
If P = vaD, then aD g4y is Pra)-primary and Pr(py is a mazimal t-ideal of

Proof. First, recall that aD is P-primary [4, Lemma 2.1] and (aD)rx) =
NpeaaDp = a(NpeaDp) = aDg(py (see (11, p.120] for the first equality).
Let b € Dz such that ab € D. Then there is an I € F(A) such that
bI C D; so abl C aD. Since I € F(A) and P € A, we have I € P, and since
aD is P-primary, ab € aD and b € D. Hence aDzy N D C aD, and thus
aD}-(A) ND=aD.

Let zy € aDx(n), where z,y € D) with y ¢ Pr(s). Then there are I, J €
F(A) such that I € D and yJ C D; hence (zI)(yJ) C aDgxy N D = aD.
Sincey & Pr(ayand J € P = PrayND, we have yJ ¢ P, and thus zI C aD;so
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z € (aD)x(a) = aDrn). Thus if we show that \/aDr ) = Pr(a), then aDza)
is a Pr(py-primary ideal, and hence Pr(a) is a maximal t-ideal [4, Lemma 2.1].
Let @ be a prime ideal of Dy() minimal over aDx(x). Then @, and hence
QN D, is a prime t-ideal {11, Proposition 1.3]. Also, since aD C QN D, we have
P=+vaDC Q) N D. Hence the maximality of P implies that P = @ N D, and
thus @ = Pr(a) [5, Theorem 1.1(2)]. This implies that \/aDgny = Prea). D

The following theorem is the GWFD analog of Theorem 2.3.

Theorem 3.2. Let A be a nonempty set of height-one maximal t-ideals of D
such that each P € A 1is the radical of a principal ideal. Then the following
statements are equivalent.

(1) D]:(A) is a GWFD.

(2) Dg(a) is o weakly Krull domain.

(3) The intersection De(ay = NpeaDp has finite character.

(4) NPy -~ Py = (0) for each infinite sequence {P,) of elements of A.
(5) F(A) is a t-splitting set of ideals.

(6) t-Maz(Drs)) = {Prn)|P € A}.

(7) F(A) is finitely generated.

(8) F(A) is v-finite.

Proof. (1) = (2) [4, Corollary 2.3]. For (2) & (3) & (4) & (5) < (6) < (7)
& (8), see Theorem 2.3. (3) = (1) Note that Dz(a) is a weakly Krull domain
and XY (D (s)) = t-Max(Dg(ay) = {Prs)|P € A} by Theorem 2.3. Also, note
that for P € A, if P = vaD, then Pr(y) = v/aDz(a) by Lemma 3.1. Thus
Dx(ay is a GWFD [4, Theorem 2.2]. O

Let T(D) be the group of t-invertible fractional t-ideals of D under the
t-multiplication I x J = (I.J);, and let Prin(D) be its subgroup of nonzero
principal fractional ideals of D. Then CU(D) = T(D)/Prin(D), called the
class group of D, is an abelian group. Recall that D is a weakly factorial
domain (WFD) if each nonzero element of D can be written as a product of
primary elements and that D is an almost weakly factorial domain (AWFD) if
for each nonzero d € D, there exists a natural number n = n(d) such that d”
can be written as a product of primary elements. It is well known that D is a
WED if and only if D is a weakly Krull domain and CI(D) = 0 [3, Theorem)]
and that D is an AWFD if and only if D is a weakly Krull domain and CI(D)
is torsion [2, Theorem 3.4].

Let S be a t-splitting set of ideals of D and S' the t-complement of S.
Then the map o : CI(D) — Cl(Ds) & Cl(Ds.) defined by a([I]) = ([(IDs)],
[(IDg1):]) 1s a group epimorphism [8, Remark 13}, and thus the homomorphism
@ : CU{D) — Cl(Ds) defined by 3([1]) = [(IDs):] is surjective. Let A be a
nonempty set of prime ¢-ideals of D. Then Npep Dp is called a subintersection
of D.
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Corollary 3.3. Any subintersection of a GWFD (resp., AWFD, WFD) is a
GWED (resp., AWFD, WFD).

Proof. Recall that a GWFD, an AWFD, and a WFD are weakly Krull domains.
Let D be a weakly Krull domain, and let R be a subintersection of D. Then R =
NpeaDp for some § # A C t-Max(D), and hence R = Dz, (10, Proposition
5.1.4].

If D is a GWFD, then t-dim(D) = 1, each prime ideal P € A is the radical
of a principal ideal [4, Theorem 2.2], and F(A) is a t-splitting set of ideals
(Corollary 2.6). Thus R = Dz(,) is a GWFD by Theorem 3.2. Next, assume
that D is a WFD (resp., AWFD). Since WFDs and AWFDs are both GWFDs,
R = D4y isa GWFD. Also, since the homomorphism § : C1(D) — Cl(Dx(a))
defined by B([I]) = [(IDx(a))s] is surjective (see the remark before Corollary
3.3), CI(R) = 0 if CI(D) = 0 and CI(R) is torsion if CI(D) is torsion. There-
fore, if D is a WFD (resp., AWFD), then R is a WFD (resp., AWFD). O

We end this paper with an example which shows that F(A) need not be
a t-splitting set of ideals for a nonempty set A of height-one principal prime
ideals (and hence maximal t-ideals).

Example 3.4. Let D be the ring of entire functions, C the field of complex
numbers, and A = {M, = (X — z)D|z € C}. Then A C ¢t-Max(D) N X*(D),
D =Npm,eaDu, [17, p.267], and D is a Bezout domain with dim(D) = oo (and
hence t-dim(D) = oo) [10, Proposition 8.1.1]. Hence D is not a GWFD, and
thus F(A) is not a t-splitting set of ideals by Theorem 3.2. The ring of entire
functions also serves as a counterexample of the following generalization of {13,
Theorem 1.6] that if each minimal prime ideal of the ideal I is the radical of a
finitely generated ideal, then I has only finitely many minimal prime ideals.
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