SPECTRAL LOCALIZING SYSTEMS THAT ARE t-SPLITTING MULTIPLICATIVE SETS OF IDEALS

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain with quotient field K, Λ a nonempty set of height-one maximal t-ideals of D, $\mathcal{F}(\Lambda) = \{I \subseteq D | I \text{ is an ideal of } D \text{ such that } I \nsubseteq P \text{ for all } P \in \Lambda\}$, and $D_{\mathcal{F}(\Lambda)} = \{x \in K | xA \subseteq D \text{ for some } A \in \mathcal{F}(\Lambda)\}$. In this paper, we prove that if each $P \in \Lambda$ is the radical of a finite type v-ideal (resp., a principal ideal), then $D_{\mathcal{F}(\Lambda)}$ is a weakly Krull domain (resp., generalized weakly factorial domain) if and only if the intersection $D_{\mathcal{F}(\Lambda)} = \bigcap_{P \in \Lambda} D_P$ has finite character, if and only if $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals, if and only if $\mathcal{F}(\Lambda)$ is v-finite.

1. Introduction

Throughout this paper D will be an integral domain with quotient field K and an ideal means an integral ideal. A nonempty set S of ideals of D is said to be *multiplicative* if S is multiplicatively closed, i.e., if $A, B \in S$ implies $AB \in S$. Let S be a multiplicative set of ideals of D. The following overring of D

$$D_{\mathcal{S}} = \{ x \in K | xA \subseteq D \text{ for some } A \in \mathcal{S} \}$$

is called the S-transform of D or the generalized ring of fractions of D with respect to S (cf. [5]). Let $\operatorname{Sat}(S)$ be the set of ideals C of D such that $A \subseteq C$ for some $A \in S$ and $S^{\perp} = \{B \subseteq D \mid B \text{ is an ideal of } D \text{ such that } (B+J)_t = D \text{ for all } J \in S\}$. If $S = \operatorname{Sat}(S)$, then S is called saturated. We say that S is finitely generated if every ideal $I \in S$ contains a finitely generated ideal which is still in S, while S is v-finite if each t-ideal $A \in \operatorname{Sat}(S)$ contains a finitely generated ideal S such that S is S-finite, but the converse does not hold (see [11, p.124]). If S is a nonempty set of nonzero prime ideals of S, we define

$$\mathcal{F}(\Lambda) = \{A \subseteq D | A \text{ is an ideal of } D \text{ such that } A \not\subseteq P \text{ for all } P \in \Lambda\}.$$

Received February 3, 2006.

²⁰⁰⁰ Mathematics Subject Classification. 13A15,13F05, 13G05.

Key words and phrases. spectral localizing system, t-splitting set of ideals, weakly Krull domain, generalized weakly factorial domain.

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-202-C00010).

Then $\mathcal{F}(\Lambda)$, called a *spectral localizing system*, is a saturated multiplicative set of ideals of D and $D_{\mathcal{F}(\Lambda)} = \bigcap_{P \in \Lambda} D_P$ [10, Proposition 5.1.4]. If P is a prime ideal of D, we denote $\mathcal{F}(\{P\})$ by $\mathcal{F}(P)$. It is obvious that $\mathcal{F}(\Lambda) = \bigcap_{P \in \Lambda} \mathcal{F}(P)$.

A multiplicative subset N of D is called a t-splitting set if for each $0 \neq d \in D$, we have $dD = (AB)_t$ for some integral ideals A and B of D, where $A_t \cap sD = sA_t$ for all $s \in N$ and $B_t \cap N \neq \emptyset$ (see [1,7]). Anderson-Anderson-Zafrullah introduced the concept of t-splitting sets and proved that the ring $D + XD_N[X]$ is a PVMD if and only if D is a PVMD and N is a t-splitting set [1, Theorem 2.5]. (Recall that D is a Prüfer v-multiplication domain (PVMD) if each nonzero finitely generated ideal of D is t-invertible.) Chang-Dumitrescu-Zafrullah further studied t-splitting sets [7] and extended the notion of t-splitting sets to multiplicative sets of ideals as follows [8]; S is a t-splitting set of ideals if every nonzero principal ideal dD of D can be written as $dD = (AB)_t$ with $A \in Sat(S)$ and $B \in S^\perp$. Clearly, if S is a t-splitting set of ideals, then S^\perp is also a t-splitting set of ideals [8, Proposition 2]. It is proved that S is a t-splitting set of ideals if and only if S is t-finite and t-forms t-form

Let Λ be a nonempty set of height-one maximal t-ideals of D. The purpose of this paper is to study when $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals. In particular, we show that if each $P \in \Lambda$ is the radical of a finite type v-ideal (resp., principal ideal), then $D_{\mathcal{F}(\Lambda)}$ is a weakly Krull domain (resp., generalized weakly factorial domain) if and only if the intersection $D_{\mathcal{F}(\Lambda)} = \bigcap_{P \in \Lambda} D_P$ has finite character, if and only if $\bigcap_n P_1 \cdots P_n = (0)$ for each infinite sequence (P_n) of distinct elements of Λ , if and only if $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals, if and only if t-Max $(D_{\mathcal{F}(\Lambda)}) = \{P_{\mathcal{F}(\Lambda)} | P \in \Lambda\}$, if and only if $\mathcal{F}(\Lambda)$ is finitely generated, if and only if $\mathcal{F}(\Lambda)$ is v-finite.

We first review some notation and definitions. Let $\mathcal{F}(D)$ be the set of nonzero fractional ideals of D. For each $I \in \mathcal{F}(D)$, let $I^{-1} = \{x \in K | xI \subseteq D\}$, $I_v = (I^{-1})^{-1}$, and $I_t = \cup \{J_v | J \subseteq I \text{ is a nonzero finitely generated fractional}$ ideal of D. Obviously, if $I \in \mathcal{F}(D)$ is finitely generated, then $I_v = I_t$. An $I \in \mathcal{F}(D)$ is called a divisorial ideal (resp., t-ideal) if $I_v = I$ (resp., $I_t = I$). A t-ideal I is called a finite type v-ideal if $I = (x_1, \ldots, x_n)_v$ for some $(0) \neq 1$ $(x_1,\ldots,x_n)\subseteq I$. An $I\in\mathcal{F}(D)$ is said to be t-invertible if $(II^{-1})_t=D$. It is known that if I is t-invertible, then I_t is a finite type v-ideal. Let t-Max(D)be the set of ideals maximal among proper integral t-ideals of D. It is well known that each ideal $P \in t\text{-Max}(D)$ is a prime ideal, $t\text{-Max}(D) \neq \emptyset$ if D is not a field, and $D = \bigcap_{P \in t\text{-Max}(D)} D_P$. We say that an ideal $P \in t\text{-Max}(D)$ is a maximal t-ideal and that D has a t-dimension one, denoted by t-dim(D) = 1, if each maximal t-ideal of D has height-one. Let $X^1(D)$ be the set of heightone prime ideals of D; so $t\text{-}\dim(D) = 1 \Leftrightarrow t\text{-}\operatorname{Max}(D) = X^1(D)$. Examples of integral domains of t-dimension one include (weakly) Krull domains and one-dimensional integral domains. For more on the v- and the t-operation, the reader may consult [12, Sections 32 and 34].

Let S be a multiplicative set of ideals of D. If I is a fractional ideal of D, then $I_S = \{x \in K | xA \subseteq I \text{ for some } A \in S\}$ is a fractional ideal of D_S . In particular, if I is a prime ideal of D, then I_S is a prime ideal of D_S . We call S^{\perp} the t-complement of S. Let A, B_1, B_2, C be ideals of D such that $A \in S$, $B_i \in S^{\perp}$, and $B_1 \subseteq C$. Then $D = (A + B_1)_t \subseteq (A + C)_t \subseteq D$, and hence $C \in S^{\perp}$. Also, $D = (A + B_1)_t (A + B_2)_t \subseteq ((A + B_1)_t (A + B_2)_t)_t \subseteq (A + B_1 B_2)_t \subseteq D$; so $(A + B_1 B_2)_t = D$. Thus S^{\perp} is a saturated multiplicative set of ideals. Also, Sat(S) is a saturated multiplicative set of ideals. It is known that $D_S = D_{Sat(S)}$ and $D = D_S \cap D_{S^{\perp}}$ [8, Lemma 7].

A nonempty family \mathcal{F} of ideals of D is called a *localizing system* if

- (i) $I \in \mathcal{F}, J$ an ideal of $D, I \subseteq J \Rightarrow J \in \mathcal{F}$;
- (ii) $I \in \mathcal{F}, J$ an ideal of $D, (J:_D iD) \in \mathcal{F}$ for all $i \in I \Rightarrow J \in \mathcal{F}$.

It can be easily shown that a localizing system is a saturated multiplicative set of ideals [10, Proposition 5.1.1] and that if Λ is a nonempty set of prime ideals of D, then $\mathcal{F}(\Lambda)$ is a localizing system [10, Proposition 5.1.4]. A localizing system \mathcal{F} is said to be spectral if $\mathcal{F} = \mathcal{F}(\Lambda)$ for some nonempty set Λ of prime ideals of D. The reader is referred to the papers [1, 7, 8] for t-splitting sets. For more on multiplicative sets of ideals, generalized ring of fractions of D, and localizing systems, see, for example, [5], [10, Section 5.1], or [11].

2. Weakly Krull domains

Let R be a commutative ring with identity, and let I be an ideal of R. Then there exist only a finite number of prime ideals of R minimal over I under one of the following conditions;

- (1) ([16, Theorem 88]) R satisfies the ascending chain condition on radical ideals.
- (2) ([13, Theorem 1.6] or [6, Theorem 2.1]) Every prime ideal of R minimal over I is the radical of a finitely generated ideal.

As the t-operation analog, El Baghdadi showed that if D satisfies the ascending chain conditions on radical t-ideals, then each t-ideal of D has a finite number of minimal prime ideals [9, Lemma 3.8]. The following lemma is a generalization of El Baghdadi's result. The proof is similar to the proofs of [6, Theorem 2.1] and [9, Lemma 3.8], and hence omitted.

Lemma 2.1. Let I be a proper integral t-ideal of D. If every prime ideal of D minimal over I is the radical of a finite type v-ideal, then I has only a finite number of minimal prime ideals.

Lemma 2.2. Let Λ be a nonempty subset of t-Max(D) and $\Sigma = t$ -Max(D) $\setminus \Lambda$.

- (1) $\mathcal{F}(\Lambda)^{\perp} = \mathcal{F}(\Sigma)$.
- (2) If $\Lambda \subseteq X^1(D)$ and $\mathcal{F}(\Lambda)$ is v-finite, then $t\text{-Max}(D_{\mathcal{F}(\Lambda)}) = \{P_{\mathcal{F}(\Lambda)} | P \in \Lambda\}$.

- Proof. (1) (\subseteq) Let $A \in \mathcal{F}(\Lambda)^{\perp}$. If $Q \in \Sigma$, then $Q \nsubseteq P$ for all $P \in \Lambda$, and hence $Q \in \mathcal{F}(\Lambda)$. So $(A+Q)_t = D$, and since $Q \in t\text{-Max}(D)$, we have $A \nsubseteq Q$. Thus $A \in \mathcal{F}(\Sigma)$. (\supseteq) Conversely, assume that B is an ideal of D such that $B \notin \mathcal{F}(\Lambda)^{\perp}$. Then $(B+C')_t \subsetneq D$ for some $C' \in \mathcal{F}(\Lambda)$, and since $C' \nsubseteq P$ for all $P \in \Lambda$, there exists a maximal t-ideal $Q \in \Sigma$ such that $B \subseteq (B+C')_t \subseteq Q$; hence $B \notin \mathcal{F}(\Sigma)$. Thus $\mathcal{F}(\Sigma) \subseteq \mathcal{F}(\Lambda)^{\perp}$.
- (2) (\subseteq) Let Q be a maximal t-ideal of $D_{\mathcal{F}(\Lambda)}$ and $P = Q \cap D$. Then P is a prime t-ideal of D [11, Proposition 1.3]. If $P \notin \Lambda$, then $P \in \mathcal{F}(\Lambda)$ (note that each prime ideal in Λ has height-one), and since $\mathcal{F}(\Lambda)$ is v-finite, there exists a finite type v-ideal I of D such that $I \in \mathcal{F}(\Lambda)$ and $I \subseteq P$; so $Q \supseteq (ID_{\mathcal{F}(\Lambda)})_v = (I_{\mathcal{F}(\Lambda)})_v = (D_{\mathcal{F}(\Lambda)})_v = D_{\mathcal{F}(\Lambda)}$ [11, Propositions 1.1(a) and 1.2(b)]. This contradiction shows that $P \in \Lambda$, and thus $Q = P_{\mathcal{F}(\Lambda)}$ [5, Theorem 1.1(2)] since $P = Q \cap D$ implies that $AD_{\mathcal{F}(\Lambda)} \nsubseteq Q$ for all $A \in \mathcal{F}(\Lambda)$. (\supseteq) Let $P \in \Lambda$. Since $(D_{\mathcal{F}(\Lambda)})_{P_{\mathcal{F}(\Lambda)}} = D_P$ [5, Theorem 1.1], we have $\operatorname{ht}(P_{\mathcal{F}(\Lambda)}) = \operatorname{ht}P = 1$, and hence $P_{\mathcal{F}(\Lambda)}$ is a prime t-ideal of $D_{\mathcal{F}(\Lambda)}$ (cf. [11, Proposition 1.6(a)]). Thus $P_{\mathcal{F}(\Lambda)}$ is a maximal t-ideal of $D_{\mathcal{F}(\Lambda)}$ (see the proof of the " \subseteq " case).

An integral domain D is called a weakly Krull domain if $D = \bigcap_{P \in X^1(D)} D_P$ and this intersection has finite character. One can easily show that D is a weakly Krull domain if and only if $t\text{-}\dim(D) = 1$ and for each $P \in X^1(D)$, $P = \sqrt{(a,b)}$ for some $a,b \in D$ (cf. [4, Theorem 2.6]). Let D be a weakly Krull domain, and let Λ be a nonempty set of prime t-ideals of D. Then $\mathcal{F}(\Lambda)$ is finitely generated [11, Lemma 1.16], and hence $t\text{-}Max(D_{\mathcal{F}(\Lambda)}) = \{P_{\mathcal{F}(\Lambda)} | P \in \Lambda\}$ by Lemma 2.2(2) (cf. [11, Proposition 1.17]). We next give the main result of this paper.

Theorem 2.3. Let Λ be a nonempty set of height-one maximal t-ideals of D such that each $P \in \Lambda$ is the radical of a finite type v-ideal. Then the following statements are equivalent.

- (1) $D_{\mathcal{F}(\Lambda)}$ is a weakly Krull domain.
- (2) The intersection $D_{\mathcal{F}(\Lambda)} = \bigcap_{P \in \Lambda} D_P$ has finite character.
- (3) $\cap_n P_1 \cdots P_n = (0)$ for each infinite sequence (P_n) of distinct elements of Λ .
- (4) $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals.
- (5) $t\text{-}Max(D_{\mathcal{F}(\Lambda)}) = \{P_{\mathcal{F}(\Lambda)} | P \in \Lambda\}.$
- (6) $\mathcal{F}(\Lambda)$ is finitely generated.
- (7) $\mathcal{F}(\Lambda)$ is v-finite.
- *Proof.* (1) \Rightarrow (3) This follows directly from the fact that $D_P = (D_{\mathcal{F}(\Lambda)})_{P_{\mathcal{F}(\Lambda)}}$ for all $P \in \Lambda$ [5, Theorem 1.1(4)]. (2) \Rightarrow (1) This appears in [11, Lemma 2.5]. For (2) \Rightarrow (6), see [11, Lemma 1.16].
- $(3) \Rightarrow (4)$ Suppose that $\bigcap_n P_1 \cdots P_n = (0)$ for each infinite sequence (P_n) of distinct elements of Λ . Let $0 \neq d \in D$. By assumption, the number of prime ideals in Λ containing d is finite, say P_1, \ldots, P_n . Let $A_i = dD_{P_i} \cap D$ and $A = (A_1 \cdots A_n)_t$.

We first show that each A_i , and hence A, is t-invertible. Note that since each P_i is of height-one, dD_{P_i} is $P_iD_{P_i}$ -primary, and hence A_i is P_i -primary. Also, note that A_i is t-locally principal since P_i is a maximal t-ideal. Hence it suffices to show that each A_i is of finite type [15, Corollary 2.7]. Let I_i be a finitely generated ideal of D such that $\sqrt{(I_i)_t} = P_i$. Since I_i is finitely generated, there is a positive integer m such that $I_i^m D_{P_i} = (I_i D_{P_i})^m \subseteq dD_{P_i}$; hence $(I_i^m)_t D_{P_i} \subseteq ((I_i^m)_t D_{P_i})_t = (I_i^m D_{P_i})_t \subseteq dD_{P_i}$ (cf. [11, Proposition 1.3] for the second equality). Replacing I_i with I_i^m , we may assume that $I_i D_{P_i} \subseteq dD_{P_i}$. Let $J_i = (d, I_i)_t$. Then J_i is a finite type v-ideal and a P_i -primary ideal [4, Lemma 2.1]. Hence $(A_i)_Q = D_Q = (J_i)_Q$ for any $Q \in t$ -Max $(D) \setminus \{P_i\}$ and $(A_i)_{P_i} = dD_{P_i} = (d, I_i)D_{P_i} = ((d, I_i)D_{P_i})_t = ((d, I_i)_t D_{P_i})_t = (J_i D_{P_i})_t \supseteq J_i D_{P_i} \supseteq dD_{P_i}$. Thus $A_i = J_i$ [15, Proposition 2.8(3)].

Now, let $B = dA^{-1}$; then $dD = (AB)_t$. We next show that $A \in \mathcal{F}(\Lambda)^{\perp}$ and $B \in \mathcal{F}(\Lambda)$, which means that $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals. Note that each A_i is P_i -primary, $d \in A_i$, and P_i is a maximal t-ideal of D. So $A = (A_1 \cdots A_n)_t = A_1 \cap \cdots \cap A_n$, and thus $d \in A$, $A \subseteq D$, and $B \subseteq D$. If $C \in \mathcal{F}(\Lambda)$, then $(A + C)_t = D$ since $C \not\subseteq P$ for all $P \in \Lambda$ and $A \not\subseteq Q$ for all $Q \in t$ -Max $(D) \setminus \Lambda$ (for $A \subseteq Q \Rightarrow A_i \subseteq Q$ for some $i \Rightarrow P_i = \sqrt{A_i} \subseteq Q \Rightarrow Q = P_i \in \Lambda$). Hence $A \in \mathcal{F}(\Lambda)^{\perp}$. Next, assume that $B \not\in \mathcal{F}(\Lambda)$. Then $B \subseteq P$ for some $P \in \Lambda$, and since $A \in \mathcal{F}(\Lambda)^{\perp}$. Next, assume that $A \in \mathcal{F}(\Lambda)$ is incaverable. Hence $A \in \mathcal{F}(\Lambda)^{\perp} = A_i \cap A_i \cap A_i \cap A_i \cap A_i \cap A_i$ is t-invertible by the above paragraph $A_i \cap A_i \cap A_i \cap A_i \cap A_i$ is t-invertible by the above paragraph $A_i \cap A_i \cap A_i$ is $A_i \cap A_i \cap A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i \cap A_i$ is $A_i \cap A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i \cap A_i$ is $A_i \cap A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ is $A_i \cap A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ is $A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ is $A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ is $A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ is $A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ is $A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ is $A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ is $A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ invertible by the above paragraph $A_i \cap A_i$ invertible $A_i \cap A_i$ invertible by $A_i \cap A_i$ invertible by $A_i \cap A_i$ invertible $A_i \cap A_i$ invertible by $A_i \cap A_i$ invertible $A_i \cap A_i$

- $(4) \Rightarrow (5)$ Let $\Sigma = t\text{-Max}(D) \setminus \Lambda$. Then $\mathcal{F}(\Lambda)^{\perp} = \mathcal{F}(\Sigma)$ by Lemma 2.2(1), and hence $t\text{-Max}(D) \cap \mathcal{F}(\Lambda)^{\perp} = \Lambda$. Therefore, $t\text{-Max}(D_{\mathcal{F}(\Lambda)}) = \{P_{\mathcal{F}(\Lambda)} | P \in \Lambda\}$ by the remark before [8, Corollary 15].
- $(5)\Rightarrow (2)$ For any $P\in\Lambda$, let I be a finite type v-ideal such that $\sqrt{I}=P$. Since $\operatorname{ht} P=1$, we have $(P_{\mathcal{F}(\Lambda)})_t=P_{\mathcal{F}(\Lambda)}$ [11, Proposition 1.6(a)]; so $(ID_{\mathcal{F}(\Lambda)})_t\subseteq (PD_{\mathcal{F}(\Lambda)})_t\subseteq (P_{\mathcal{F}(\Lambda)})_t\subseteq D_{\mathcal{F}(\Lambda)}$. Let Q be a prime ideal of $D_{\mathcal{F}(\Lambda)}$ minimal over $(ID_{\mathcal{F}(\Lambda)})_t$. Since $I\subseteq ID_{\mathcal{F}(\Lambda)}\cap D\subseteq Q\cap D$ and $\sqrt{I}=P$, we have $P\subseteq Q\cap D$, and hence $P=Q\cap D$ since P is a maximal t-ideal and $Q\cap D$ is a t-ideal [11, Proposition 1.3]. In particular, $P=Q\cap D$ implies that $AD_{\mathcal{F}(\Lambda)}\nsubseteq Q$ for all $A\in\mathcal{F}(\Lambda)$, and so $Q=(Q\cap D)_{\mathcal{F}(\Lambda)}$ [5, Theorem 1.1(2)]. Therefore, $P_{\mathcal{F}(\Lambda)}=\sqrt{(ID_{\mathcal{F}(\Lambda)})_t}$, and since $(J_tD_{\mathcal{F}(\Lambda)})_t=(JD_{\mathcal{F}(\Lambda)})_t$ for any nonzero finitely generated ideal J of D [11, Proposition 1.2(b)], $P_{\mathcal{F}(\Lambda)}$ is the radical of a finite type v-ideal. Note that $(D_{\mathcal{F}(\Lambda)})_{P_{\mathcal{F}(\Lambda)}}=D_P$ for all $P\in\Lambda$ [5, Theorem 1.1]. Thus the intersection $D_{\mathcal{F}(\Lambda)}=\cap_{P\in\Lambda}D_P$ has finite character by Lemma 2.1.

$$(6) \Rightarrow (7) \text{ Clear. } (7) \Rightarrow (5) \text{ See Lemma } 2.2(2).$$

Corollary 2.4. Let Λ be a nonempty set of t-invertible height-one prime ideals of D. Then the following statements are equivalent.

- (1) $D_{\mathcal{F}(\Lambda)}$ is a Krull domain.
- (2) $D_{\mathcal{F}(\Lambda)}$ is a weakly Krull domain.
- (3) The intersection $D_{\mathcal{F}(\Lambda)} = \bigcap_{P \in \Lambda} D_P$ has finite character.
- (4) $\cap_n P_1 \cdots P_n = (0)$ for each infinite sequence (P_n) of distinct elements of Λ .
- (5) $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals.
- (6) $t\text{-}Max(D_{\mathcal{F}(\Lambda)}) = \{P_{\mathcal{F}(\Lambda)} | P \in \Lambda\}.$
- (7) $\mathcal{F}(\Lambda)$ is finitely generated.
- (8) $\mathcal{F}(\Lambda)$ is v-finite.

Proof. (1) \Rightarrow (2) is clear and (3) \Rightarrow (1) appears in [11, Theorem 2.9]. The other implications are immediate consequences of Theorem 2.3 since t-invertible prime t-ideals are maximal t-ideals [14, Proposition 1.3] and of finite type. \Box

An integral domain D is said to be of t-finite character if each nonzero nonunit of D is contained in only a finite number of maximal t-ideals of D, i.e., if the intersection $D = \bigcap_{P \in t\text{-}\mathrm{Max}(D)} D_P$ has finite character. It is clear that a weakly Krull domain is of t-finite character.

Corollary 2.5. Let Λ be a nonempty set of height-one maximal t-ideals of D. If D is of t-finite character, then $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals.

Proof. First, note that $\mathcal{F}(\Lambda)$ is finitely generated [11, Proposition 1.17]. Next, let $P \in \Lambda$, and choose a nonzero element $x \in P$. Since D is of t-finite character, there are only finitely many maximal t-ideals of D containing x. So we can choose an $y \in P$ such that $P = \sqrt{(x,y)}$ since htP = 1 (cf. [16, Theorem 83]). Hence $P = \sqrt{(x,y)_v}$. Thus $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals by Theorem 2.3.

Note that the integral domain $\mathbb{Z} + X\mathbb{Q}[X]$ does not have t-finite character, even though $\mathcal{F}(\Lambda)$ is finitely generated for each nonempty subset Λ of prime t-ideals (see [10, Example 8.4.7] or [11, p.129]). Our next result shows that if t-dim(D) = 1, then D has t-finite character if and only if $\mathcal{F}(\Lambda)$ is finitely generated for all nonempty subsets Λ of maximal t-ideals of D.

Corollary 2.6. The following statements are equivalent.

- (1) D is a weakly Krull domain.
- (2) $\mathcal{F}(\Lambda)$ is t-splitting for every nonempty subset Λ of prime t-ideals of D.
- (3) t-dim(D) = 1 and $\mathcal{F}(\Lambda)$ is finitely generated for every nonempty subset Λ of prime t-ideals of D.

Proof. (1) \Rightarrow (2) and (3) Suppose that D is a weakly Krull domain, and let Λ be a nonempty set of prime t-ideals of D. Then t-dim(D) = 1, and hence each prime t-ideal of D is a height-one maximal t-ideal. Thus $\mathcal{F}(\Lambda)$ is finitely generated [11, Proposition 1.17]. Also, since a weakly Krull domain is of t-finite character, $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals by Corollary 2.5.

- (2) \Rightarrow (1) Let P be a prime ideal of D minimal over a nonzero principal ideal. Note that $D_{\mathcal{F}(P)} = D_P$; so $dD_P \cap D$ is t-invertible for all $0 \neq d \in D$ [8, Proposition 5]. Hence $D \setminus P$ is a t-splitting set [1, Corollary 2.3]). Thus D is a weakly Krull domain [1, p.8].
- $(3) \Rightarrow (1)$ Let $P \in t\text{-Max}(D)$ and $\Lambda = t\text{-Max}(D) \setminus \{P\}$. Then $P \nsubseteq Q$ for all $Q \in \Lambda$, and hence $P \in \mathcal{F}(\Lambda)$; so there is a finitely generated ideal I of D such that $I \subseteq P$ and $I \nsubseteq Q$ for all $Q \in \Lambda$. So $P = \sqrt{I_t}$ since t-dim(D) = 1, and thus the intersection $D = \bigcap_{P \in X^1(D)} D_P$ has finite character by Lemma 2.1.

An integral domain D is called a *Mori domain* if D satisfies the ascending chain condition on integral divisorial ideals of D; equivalently, if each t-ideal of D is a finite type v-ideal. It is well known, and easily verified, that a Mori domains (and hence Noetherian domain) has t-finite character. So if D is a Mori domain with t-dim(D) = 1, then every spectral localizing system of D is finitely generated by Corollary 2.6. Our next result is a restatement of Corollary 2.6 for a Mori domain.

Corollary 2.7. The following statements are equivalent for a Mori domain D.

- (1) D is a weakly Krull domain.
- (2) t dim(D) = 1.
- (3) $\mathcal{F}(\Lambda)$ is t-splitting for every nonempty subset Λ of prime t-ideals of D.

3. Generalized weakly factorial domains

A nonzero element $x \in D$ is said to be primary if xD is a primary ideal, while D is called a generalized weakly factorial domain (GWFD) if each nonzero prime ideal of D contains a primary element (see [4]). This concept is a generalization of the well-known property of a UFD; D is a UFD if and only if each nonzero prime ideal of D contains a principal prime [16, Theorem 5]. It is known that D is a GWFD if and only if t-dim(D) = 1 and for each $P \in X^1(D)$, $P = \sqrt{aD}$ for some $a \in D$ [4, Theorem 2.2]; so a GWFD is a weakly Krull domain. We next give the GWFD analog of Theorem 2.3. To do this, we need a lemma.

Lemma 3.1. Let Λ be a nonempty set of maximal t-ideals of D, and let $P \in \Lambda$. If $P = \sqrt{aD}$, then $aD_{\mathcal{F}(\Lambda)}$ is $P_{\mathcal{F}(\Lambda)}$ -primary and $P_{\mathcal{F}(\Lambda)}$ is a maximal t-ideal of $D_{\mathcal{F}(\Lambda)}$.

Proof. First, recall that aD is P-primary [4, Lemma 2.1] and $(aD)_{\mathcal{F}(\Lambda)} = \bigcap_{P \in \Lambda} aD_P = a(\bigcap_{P \in \Lambda} D_P) = aD_{\mathcal{F}(\Lambda)}$ (see [11, p.120] for the first equality). Let $b \in D_{\mathcal{F}(\Lambda)}$ such that $ab \in D$. Then there is an $I \in \mathcal{F}(\Lambda)$ such that $bI \subseteq D$; so $abI \subseteq aD$. Since $I \in \mathcal{F}(\Lambda)$ and $P \in \Lambda$, we have $I \nsubseteq P$, and since aD is P-primary, $ab \in aD$ and $b \in D$. Hence $aD_{\mathcal{F}(\Lambda)} \cap D \subseteq aD$, and thus $aD_{\mathcal{F}(\Lambda)} \cap D = aD$.

Let $xy \in aD_{\mathcal{F}(\Lambda)}$, where $x, y \in D_{\mathcal{F}(\Lambda)}$ with $y \notin P_{\mathcal{F}(\Lambda)}$. Then there are $I, J \in \mathcal{F}(\Lambda)$ such that $xI \subseteq D$ and $yJ \subseteq D$; hence $(xI)(yJ) \subseteq aD_{\mathcal{F}(\Lambda)} \cap D = aD$. Since $y \notin P_{\mathcal{F}(\Lambda)}$ and $J \nsubseteq P = P_{\mathcal{F}(\Lambda)} \cap D$, we have $yJ \nsubseteq P$, and thus $xI \subseteq aD$; so

 $x \in (aD)_{\mathcal{F}(\Lambda)} = aD_{\mathcal{F}(\Lambda)}$. Thus if we show that $\sqrt{aD_{\mathcal{F}(\Lambda)}} = P_{\mathcal{F}(\Lambda)}$, then $aD_{\mathcal{F}(\Lambda)}$ is a $P_{\mathcal{F}(\Lambda)}$ -primary ideal, and hence $P_{\mathcal{F}(\Lambda)}$ is a maximal t-ideal [4, Lemma 2.1]. Let Q be a prime ideal of $D_{\mathcal{F}(\Lambda)}$ minimal over $aD_{\mathcal{F}(\Lambda)}$. Then Q, and hence $Q \cap D$, is a prime t-ideal [11, Proposition 1.3]. Also, since $aD \subseteq Q \cap D$, we have $P = \sqrt{aD} \subseteq Q \cap D$. Hence the maximality of P implies that $P = Q \cap D$, and thus $Q = P_{\mathcal{F}(\Lambda)}$ [5, Theorem 1.1(2)]. This implies that $\sqrt{aD_{\mathcal{F}(\Lambda)}} = P_{\mathcal{F}(\Lambda)}$. \square

The following theorem is the GWFD analog of Theorem 2.3.

Theorem 3.2. Let Λ be a nonempty set of height-one maximal t-ideals of D such that each $P \in \Lambda$ is the radical of a principal ideal. Then the following statements are equivalent.

- (1) $D_{\mathcal{F}(\Lambda)}$ is a GWFD.
- (2) $D_{\mathcal{F}(\Lambda)}$ is a weakly Krull domain.
- (3) The intersection $D_{\mathcal{F}(\Lambda)} = \bigcap_{P \in \Lambda} D_P$ has finite character.
- (4) $\cap_n P_1 \cdots P_n = (0)$ for each infinite sequence (P_n) of elements of Λ .
- (5) $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals.
- (6) $t\text{-}Max(D_{\mathcal{F}(\Lambda)}) = \{P_{\mathcal{F}(\Lambda)}|P \in \Lambda\}.$
- (7) $\mathcal{F}(\Lambda)$ is finitely generated.
- (8) $\mathcal{F}(\Lambda)$ is v-finite.

Proof. (1) \Rightarrow (2) [4, Corollary 2.3]. For (2) \Leftrightarrow (3) \Leftrightarrow (4) \Leftrightarrow (5) \Leftrightarrow (6) \Leftrightarrow (7) \Leftrightarrow (8), see Theorem 2.3. (3) \Rightarrow (1) Note that $D_{\mathcal{F}(\Lambda)}$ is a weakly Krull domain and $X^1(D_{\mathcal{F}(\Lambda)}) = t\text{-Max}(D_{\mathcal{F}(\Lambda)}) = \{P_{\mathcal{F}(\Lambda)}|P\in\Lambda\}$ by Theorem 2.3. Also, note that for $P\in\Lambda$, if $P=\sqrt{aD}$, then $P_{\mathcal{F}(\Lambda)}=\sqrt{aD_{\mathcal{F}(\Lambda)}}$ by Lemma 3.1. Thus $D_{\mathcal{F}(\Lambda)}$ is a GWFD [4, Theorem 2.2].

Let T(D) be the group of t-invertible fractional t-ideals of D under the t-multiplication $I*J=(IJ)_t$, and let Prin(D) be its subgroup of nonzero principal fractional ideals of D. Then Cl(D)=T(D)/Prin(D), called the class group of D, is an abelian group. Recall that D is a weakly factorial domain (WFD) if each nonzero element of D can be written as a product of primary elements and that D is an almost weakly factorial domain (AWFD) if for each nonzero $d \in D$, there exists a natural number n=n(d) such that d^n can be written as a product of primary elements. It is well known that D is a WFD if and only if D is a weakly Krull domain and Cl(D)=0 [3, Theorem] and that D is an AWFD if and only if D is a weakly Krull domain and Cl(D) is torsion [2, Theorem 3.4].

Let S be a t-splitting set of ideals of D and S^{\perp} the t-complement of S. Then the map $\alpha: Cl(D) \to Cl(D_S) \oplus Cl(D_{S^{\perp}})$ defined by $\alpha([I]) = ([(ID_S)_t], [(ID_{S^{\perp}})_t])$ is a group epimorphism [8, Remark 13], and thus the homomorphism $\beta: Cl(D) \to Cl(D_S)$ defined by $\beta([I]) = [(ID_S)_t]$ is surjective. Let Λ be a nonempty set of prime t-ideals of D. Then $\cap_{P \in \Lambda} D_P$ is called a subintersection of D.

Corollary 3.3. Any subintersection of a GWFD (resp., AWFD, WFD) is a GWFD (resp., AWFD, WFD).

Proof. Recall that a GWFD, an AWFD, and a WFD are weakly Krull domains. Let D be a weakly Krull domain, and let R be a subintersection of D. Then $R = \bigcap_{P \in \Lambda} D_P$ for some $\emptyset \neq \Lambda \subseteq t\text{-Max}(D)$, and hence $R = D_{\mathcal{F}(\Lambda)}$ [10, Proposition 5.1.4].

If D is a GWFD, then t-dim(D) = 1, each prime ideal $P \in \Lambda$ is the radical of a principal ideal [4, Theorem 2.2], and $\mathcal{F}(\Lambda)$ is a t-splitting set of ideals (Corollary 2.6). Thus $R = D_{\mathcal{F}(\Lambda)}$ is a GWFD by Theorem 3.2. Next, assume that D is a WFD (resp., AWFD). Since WFDs and AWFDs are both GWFDs, $R = D_{\mathcal{F}(\Lambda)}$ is a GWFD. Also, since the homomorphism $\beta : Cl(D) \to Cl(D_{\mathcal{F}(\Lambda)})$ defined by $\beta([I]) = [(ID_{\mathcal{F}(\Lambda)})_t]$ is surjective (see the remark before Corollary 3.3), Cl(R) = 0 if Cl(D) = 0 and Cl(R) is torsion if Cl(D) is torsion. Therefore, if D is a WFD (resp., AWFD), then R is a WFD (resp., AWFD).

We end this paper with an example which shows that $\mathcal{F}(\Lambda)$ need not be a t-splitting set of ideals for a nonempty set Λ of height-one principal prime ideals (and hence maximal t-ideals).

Example 3.4. Let D be the ring of entire functions, \mathbb{C} the field of complex numbers, and $\Lambda = \{M_z = (X-z)D|z \in \mathbb{C}\}$. Then $\Lambda \subseteq t\text{-Max}(D) \cap X^1(D)$, $D = \cap_{M_z \in \Lambda} D_{M_z}$ [17, p.267], and D is a Bezout domain with $\dim(D) = \infty$ (and hence $t\text{-dim}(D) = \infty$) [10, Proposition 8.1.1]. Hence D is not a GWFD, and thus $\mathcal{F}(\Lambda)$ is not a t-splitting set of ideals by Theorem 3.2. The ring of entire functions also serves as a counterexample of the following generalization of [13, Theorem 1.6] that if each minimal prime ideal of the ideal I is the radical of a finitely generated ideal, then I has only finitely many minimal prime ideals.

References

- D. D. Anderson, D. F. Anderson, and M. Zafrullah, The ring D+XD_S[X] and t-splitting sets, Arab. J. Sci. Eng. Sect. C Theme Issues 26 (2001), no. 1, 3-16.
- [2] D. D. Anderson, J. L. Mott, and M. Zafrullah, Finite character representations for integral domains, Boll. Un. Mat. Ital. B (7) 6 (1992), no. 3, 613-630.
- [3] D. D. Anderson and M. Zafrullah, Weakly factorial domains and groups of divisibility, Proc. Amer. Math. Soc. 109 (1990), no. 4, 907-913.
- [4] D. F. Anderson, G. W. Chang, and J. Park, Generalized weakly factorial domains, Houston Math. J. 29 (2003), no. 1, 1-13.
- [5] J. T. Arnold and J. W. Brewer, On flat overrings, ideal transforms and generalized transforms of a commutative ring, J. Algebra 18 (1971), 254-263.
- [6] G. W. Chang, Weakly factorial rings with zero divisors, Lecture Notes in Pure and Appl. Math., 220, Dekker, New York, 2001.
- [7] G. W. Chang, T. Dumitrescu, and M. Zafrullah, t-splitting sets in integral domains, J. Pure Appl. Algebra 187 (2004), no. 1-3, 71-86.
- [8] _____, t-splitting multiplicative sets of ideals in integral domains, J. Pure Appl. Algebra 197 (2005), no. 1-3, 239-248.
- [9] S. El Baghdadi, On a class of Prüfer v-multiplication domains, Comm. Algebra 30 (2002), no. 8, 3723–3742.

- [10] M. Fontana, J. A. Huckaba, and I. J. Papick, Prüfer domains, Marcel Dekker, Inc., New York, 1997.
- [11] S. Gabelli, On Nagata's theorem for the class group, II, Lecture Notes in Pure and Appl. Math., Vol 206, Marcel Dekker, New York, 1999.
- [12] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
- [13] R. Gilmer and W. Heinzer, Primary ideals with finitely generated radical in a commutative ring, Manuscripta Math. 78 (1993), no. 2, 201-221.
- [14] E. Houston and M. Zafrullah, On t-invertibility, II, Comm. Algebra 17 (1989), no. 8, 1955-1969.
- [15] B. G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), no. 1, 151–170.
- [16] I. Kaplansky, Commutative Rings, Revised Ed., The University of Chicago Press, Chicago, Ill.-London, 1974.
- [17] K. A. Loper, A class of Prüfer domains that are similar to the ring of entire functions, Rocky Mountain J. Math. 28 (1998), no. 1, 267-285.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF INCHEON INCHEON 402-749, KOREA E-mail address: whan@incheon.ac.kr