본 논문에서는 LSTM Autoencoder를 활용한 전동기의 Anomaly Detection을 제안한다. 전동기의 Anomaly Detection를 통해 전동킥보드의 고장을 예방하여 이용자의 안전을 보장한다. 전동기로부터 얻은 시계열 진동 데이터와 시계열 데이터 분석에 유의미한 LSTM을 활용한 Autoencoder를 통해 Anomaly Detection을 구현했다. 그 결과 99.9%의 정확도를 기록하였다.
본 논문에서는 LSTM-Autoencoder 기반 특징추출과 재구성 데이터를 이용한 수온 예측 방법을 제안한다. 냉수대 현상이 발생한 동해 낙산 지역의 해수면 수온과 수온에 영향을 미치는 풍향, 풍속 등 다변량 시계열 데이터를 이용하고, LSTM-Autoencoder 모델을 이용하여, 원본 데이터의 차원 축소를 통해 추출된 특징 데이터를 원본 데이터의 다변수 데이터로 결합한 데이터, 복원 데이터, 원본 데이터 총 3가지를 사용한다. 수온 예측을 위해 LSTM 모델에 3가지 데이터를 학습하고, 정확도를 평가한 결과 MAE 0.3652, RMSE 0.5604, MAPE 3.309%으로 LSTM-Autoencoder의 특징추출을 이용한 수온 예측 정확도가 가장 우수한 성능을 보이는 것을 확인하였다. 본 연구의 결과는 냉수대와 같이 해수면 수온 변화가 급변하는 구간의 예측 정확도를 높여, 자연재해의 피해를 예방할 수 있을 것으로 기대한다.
에스컬레이터의 고장 여부를 사전에 파악하는 것은 경제적 손실뿐만 아니라 인명 피해를 예방할 수 있어서 매우 중요하다. 실제 이러한 고장 예측을 위한 많은 딥러닝 알고리즘이 연구되고 있지만, 설비의 이상 데이터 확보가 어려워 모델 학습이 어렵다는 문제점이 있다. 본 연구에서는 이러한 문제의 해결 방안으로 비지도 학습 기반의 방법론 중 하나인 LSTM Autoencoder 알고리즘을 사용해 에스컬레이터의 이상을 탐지하는 모델을 생성했고, 최종 실험 결과 모델 성능 AUROC가 0.9966, 테스트 Accuracy가 0.97이라는 높은 정확도를 기록했다.
본 논문은 부유식 풍력터빈의 블레이드 피치 시스템에서 발생하는 이상을 조기에 감지하기 위한 LSTM-Autoencoder 모델 기반의 이상징후 감지 시스템을 설명한다. 발전소 모니터링 시스템에 활용되는 센서 데이터는 주로 시계열 데이터로 구성되며, LSTM 네트워크는 이러한 시계열 데이터를 분석하기 위해 두 개의 단방향 LSTM 네트워크로 구성된다. 이를 통해 순차 데이터에 숨겨진 장기 의존성을 효과적으로 발견할 수 있다. 한편, 오토인코더 메커니즘은 정상상태 데이터로부터만 학습하여 이상상태를 분류될 수 있기 때문에 이 두 가지 네트워크를 결합하여 시스템에 발생하는 이상징후를 효과적으로 감지할 수 있다. 제안된 프레임워크의 효과를 입증하기 위해 풍력 터빈 모델에서 수집한 실제 다변량 시계열 데이터셋을 적용하였다. LSTM-AE 모델은 높은 이상징후 감지 정확도를 달성하여 우수한 성능을 보였다.
자기상관 공정에서 이상상태를 빠르게 탐지하는 절차에 대해 많은 연구가 진행되어 왔다. 가장 전통적인 절차는 관측된 데이터에 대해 적합한 시계열 모형에서 계산된 잔차를 이용하는 잔차 관리도이다. 그러나 최근에는 통계적 학습 방법을 이용하여 자기상관 공정을 모니터링하는 절차가 많이 제안되었다. 이 논문에서는 딥러닝에 기반한 비지도 학습 방법인 LSTM Autoencoder의 잠재 벡터를 이용한 모니터링 절차를 제안하고, 이를 모의실험을 통해 LSTM Autoencoder의 복원 오차를 이용한 절차, RNN 분류 모니터링 절차, 그리고 잔차 관리도 절차의 성능과 비교하였다. 모의실험 결과, 제안된 절차와 RNN 분류 모니터링 절차의 성능은 유사하지만, 제안된 절차는 학습에 이상상태의 데이터가 필요하지 않기 때문에 이상상태의 데이터를 충분하게 확보할 수 없는 공정에 유용하게 적용할 수 있다는 장점이 있다.
최근 센서 측정 데이터, 구매이력 등과 같이 시간 정보를 포함하는 시퀀스(sequence) 데이터가 다양한 응용에서 발생되고 있다. 주어진 시퀀스들 중 다른 시퀀스들과 매우 상이한 이상(anomalous) 시퀀스를 탐지하는 기법들은 지금까지 많이 연구되어왔으나 이들 대부분은 주로 시퀀스 내 원소들의 순서만을 고려하여 이상 시퀀스를 찾는다는 한계가 있다. 따라서 본 논문에서는 원소들의 순서와 원소들 간의 시간 간격 모두를 고려하는 새로운 이상 시퀀스 탐지 기법을 제안한다. 본 논문에서 제안하는 방법은 확장된 LSTM 오토인코더 모델을 사용한다. 이 모델은 시퀀스를 해당 시퀀스 내 원소들의 순서와 시간 간격 모두를 효과적으로 학습할 수 있는 형태로 변환하는 층을 추가로 가진다. 제안방법은 확장된 LSTM 오토인코더 모델로 주어진 시퀀스들의 특징을 학습한 뒤, 해당 모델이 잘 복원하지 못하는 시퀀스를 이상 시퀀스로 탐지한다. 본 논문에서는 정상 시퀀스와 이상 시퀀스를 혼합한 가상 데이터를 사용하여 제안 방법이 전통적인 LSTM 오토인코더만을 사용하는 방법과 비교하여 100%에 가까운 정확도를 나타냄을 보인다.
인터넷, 모바일 등 네트워크 기술이 발전함에 따라 내외부 침입 및 위협으로부터 조직의 자원을 보호하기 위한 보안의 중요성이 커지고 있다. 따라서 최근에는 다양한 보안 로그 이벤트에 대하여 보안 위협 여부를 사전에 파악하고, 예방하는 이상징후 식별 알고리즘의 개발이 강조되고 있다. 과거 규칙 기반 또는 통계 학습에 기반하여 개발되어 온 보안 이상징후 식별 알고리즘은 점차 기계 학습과 딥러닝에 기반한 모델링으로 진화하고 있다. 본 연구에서는 다양한 기계 학습 분석 방법론을 활용하여 악의적 내부자 위협을 사전에 식별하는 최적 알고리즘으로 LSTM-autoencoder를 변형한 Deep-autoencoder 모형을 제안한다. 본 연구는 비지도 학습에 기반한 이상탐지 알고리즘 개발을 통해 적응형 보안의 가능성을 향상시키고, 지도 학습에 기반한 정탐 레이블링을 통해 기존 알고리즘 대비 오탐율을 감소시켰다는 점에서 학문적 의의를 갖는다.
A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there have been studies on graph embedding, especially using deep learning techniques. However, until now, most deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph. Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each nodeweight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in measuring the similarity between weighted graphs.
This study proposes a two-stage hybrid classification model for crop classification using multi-temporal remote sensing images; the model combines feature embedding by using an autoencoder (AE) with a convolutional neural network (CNN) classifier to fully utilize features including informative temporal and spatial signatures. Long short-term memory (LSTM)-based AE (LAE) is fine-tuned using class label information to extract latent features that contain less noise and useful temporal signatures. The CNN classifier is then applied to effectively account for the spatial characteristics of the extracted latent features. A crop classification experiment with multi-temporal unmanned aerial vehicle images is conducted to illustrate the potential application of the proposed hybrid model. The classification performance of the proposed model is compared with various combinations of conventional deep learning models (CNN, LSTM, and convolutional LSTM) and different inputs (original multi-temporal images and features from stacked AE). From the crop classification experiment, the best classification accuracy was achieved by the proposed model that utilized the latent features by fine-tuned LAE as input for the CNN classifier. The latent features that contain useful temporal signatures and are less noisy could increase the class separability between crops with similar spectral signatures, thereby leading to superior classification accuracy. The experimental results demonstrate the importance of effective feature extraction and the potential of the proposed classification model for crop classification using multi-temporal remote sensing images.
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권1호
/
pp.216-238
/
2023
In intelligent transportation systems, traffic management is an important task. The accurate forecasting of traffic characteristics like flow, congestion, and density is still active research because of the non-linear nature and uncertainty of the spatiotemporal data. Inclement weather, such as rain and snow, and other special events such as holidays, accidents, and road closures have a significant impact on driving and the average speed of vehicles on the road, which lowers traffic capacity and causes congestion in a widespread manner. This work designs a model for multivariate short-term traffic congestion prediction using SLSTM_AE-BiLSTM. The proposed design consists of a Bidirectional Long Short Term Memory(BiLSTM) network to predict traffic flow value and a Convolutional Neural network (CNN) model for detecting the congestion status. This model uses spatial static temporal dynamic data. The stacked Long Short Term Memory Autoencoder (SLSTM AE) is used to encode the weather features into a reduced and more informative feature space. BiLSTM model is used to capture the features from the past and present traffic data simultaneously and also to identify the long-term dependencies. It uses the traffic data and encoded weather data to perform the traffic flow prediction. The CNN model is used to predict the recurring congestion status based on the predicted traffic flow value at a particular urban traffic network. In this work, a publicly available Caltrans PEMS dataset with traffic parameters is used. The proposed model generates the congestion prediction with an accuracy rate of 92.74% which is slightly better when compared with other deep learning models for congestion prediction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.