

www.kips.or.kr Copyright© 2020 KIPS

A Graph Embedding Technique for Weighted Graphs
Based on LSTM Autoencoders

Minji Seo* and Ki Yong Lee*

Abstract
A graph is a data structure consisting of nodes and edges between these nodes. Graph embedding is to generate
a low dimensional vector for a given graph that best represents the characteristics of the graph. Recently, there
have been studies on graph embedding, especially using deep learning techniques. However, until now, most
deep learning-based graph embedding techniques have focused on unweighted graphs. Therefore, in this paper,
we propose a graph embedding technique for weighted graphs based on long short-term memory (LSTM)
autoencoders. Given weighted graphs, we traverse each graph to extract node-weight sequences from the graph.
Each node-weight sequence represents a path in the graph consisting of nodes and the weights between these
nodes. We then train an LSTM autoencoder on the extracted node-weight sequences and encode each node-
weight sequence into a fixed-length vector using the trained LSTM autoencoder. Finally, for each graph, we
collect the encoding vectors obtained from the graph and combine them to generate the final embedding vector
for the graph. These embedding vectors can be used to classify weighted graphs or to search for similar
weighted graphs. The experiments on synthetic and real datasets show that the proposed method is effective in
measuring the similarity between weighted graphs.

Keywords
Graph Embedding, Graph Similarity, LSTM Autoencoder, Weighted Graph Embedding, Weighted Graph

1. Introduction

A graph is a data structure consisting of nodes and edges between these nodes. Graphs are widely used

to represent data in various fields such as chemistry, biology, and social networking services (SNS).

Recently, with the advance of deep learning techniques [1-3], deep learning-based graph analysis has

been conducted on various topics. Among them, graph embedding is to represent a graph as a vector in a

low-dimensional space. The goal of graph embedding is to generate a low dimensional vector for a given

graph that best represents the characteristics of the graph. Thus, if two graphs are similar, their embedding

vectors should be similar.

In recent years, as the use of deep learning has increased in various fields including image recognition

and natural language processing, research on graph embedding using deep learning has also been actively

conducted [4,5]. Deep learning-based graph embedding methods use various deep learning models and

techniques to extract the features of graphs and encode the extracted features into fixed-length vectors.

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which
permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received March 19, 2020; first revision June 1, 2020; accepted June 7, 2020.
Corresponding Author: Ki Yong Lee (kiyonglee@sookmyung.ac.kr)
* Dept. of Computer Science, Sookmyung Women’s University, Seoul, Korea (minkky@sookmyung.ac.kr, kiyonglee@sookmyung.ac.kr)

J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020 ISSN 1976-913X (Print)
https://doi.org/10.3745/JIPS.04.0197 ISSN 2092-805X (Electronic)

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

1408 | J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020

However, until now, most deep learning-based graph embedding methods have focused on the structure

of graphs (i.e., topology or connections between nodes) and do not take much into account the weights

of edges in graphs. As a result, embedding vectors generated by most existing deep learning-based graph

embedding methods do not contain the information about the weights of edges in graphs.

A weighted graph is a graph in which each edge is assigned a weight. In real applications, weighted

graphs are widely used to represent chemical compounds, where each weight represents the distance or

bond strength between atoms, and social networks, where each weight represents the degree of closeness

between people. Consider the three chemical compounds shown in Fig. 1. Fig. 1(a) and (b) have the same

structure but very different weights, while Fig. 1(a) and (c) have the same structure and similar weights.

If we apply most of the existing deep learning-based graph embedding methods to the three graphs in

Fig. 1, similar embedding vectors are generated for all the three graphs because these methods do not

consider the weight of edges in the graphs. However, considering the weights, the embedding vectors of

Fig. 1(a) and (c) should be more similar than those of Fig. 1(a) and (b). This can be a very serious problem

when we deal with weighted graphs because the weights of edges is one of the important characteristics

of graphs.

 (a) (b) (c)
Fig. 1. Examples of graphs with different weights.

Therefore, in this paper, we propose a graph embedding technique for weighted graphs based on long

short-term memory (LSTM) autoencoders. Given weighted graphs, we traverse each graph in a pre-

defined way to extract node-weight sequences from the graph. A node-weight sequence of a graph is a

sequence of nodes and weights in the graph, listed in the order in which they are visited, starting from a

particular node in the graph. Each node-weight sequence extracted from a graph can be considered to

represent partial information about the structure and weights of the graph. After extracting node-weight

sequences from all the given weighted graphs, we train an LSTM autoencoder on the extracted node-

weight sequences and encode each node-weight sequence into a fixed-length vector using the trained

LSTM autoencoder. Finally, for each graph, we collect the encoding vectors obtained from the graph and

combine them to generate the final embedding vector for the graph. The embedding vectors generated in

this way include not only information about the structure of the graphs, but also information about the

weights of the graphs. These embedding vectors can be used to classify weighted graphs or to search for

similar weighted graphs. The experiments on synthetic and real datasets show that the proposed method

is very effective in measuring the similarity between weighted graphs.

The remainder of the paper is organized as follows. In Section 2, we present related work on graph

embedding and describe the deep learning model used in the proposed method. Section 3 describes the

proposed graph embedding technique in detail. In Section 4, we present the experimental results on

synthetic and real datasets to show the effectiveness of the proposed method. Finally, we conclude in

Section 5.

Minji Seo and Ki Yong Lee

J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020 | 1409

2. Related Work

2.1 Graph Embedding

The goal of graph embedding is to represent a given graph as a low-dimensional vector while

maintaining the characteristics of the graph as much as possible. According to how to get the

representation of graphs, graph embedding methods can be largely classified into three categories [5]:

matrix factorization methods, graph kernel methods, and deep learning-based methods.

(1) Matrix factorization methods: Early methods of graph embedding primarily attempted to solve

graph embedding problems using matrix factorization [4,5]. These methods represent the property of a

graph in the form of a matrix and factorize this matrix to obtain its embedding vector.

(2) Graph kernel methods: These methods represent each graph as a vector according to a

predetermined scheme (e.g., by expressing sub-graphs or sub-tree patterns, or by conducting random-

walks) and then measure the similarity between two graphs by calculating the inner product of their

representing vectors [6].

(3) Deep learning-based methods: These methods apply existing deep learning models to extract the

features of graphs or develop a new deep learning model specialized in extracting the features of graphs.

In this paper, we focus on deep learning-based methods because they do not require manual selection of

features and show good performance in many applications [7-11]. Let us describe deep learning-based

methods in more detail below.

Deep learning-based graph embedding methods are divided into two types: node embedding and

whole-graph embedding. Node embedding is to learn a low-dimensional vector representation of each

node in a graph, whereas whole-graph embedding is to represent the whole graph as a single vector. In

this paper, we focus on whole-graph embedding.

These two studies, [7] and [8], are representative node embedding methods based on deep learning.

Scarselli et al. [7] propose the graph neural network (GNN), which is a neural network model used to

represent graph structures. GNN extends the recurrent neural network (RNN) to learn the representation

of each node. Given the structure information of a graph (e.g., the degree of each node in the graph), the

GNN generates the embedding vector of each node by using the feature vector representing the structure

information of that node and the feature vectors of its neighboring nodes. To obtain the embedding vector

of a node N, the feature vector of N and the feature vectors of the neighboring nodes of N are aggregated.

This process is repeated until the embedding vectors of all nodes become stable. Kipf and Welling [8]

propose the graph convolutional network (GCN), which is a variant of the method in [7]. The authors [8]

use a different way to aggregate the structure information of neighboring nodes when generating the

embedding vector of a node. Unlike [7] that uses the average when aggregating the structure information

of neighboring nodes, [8] assigns a different weight to each neighbor based on its degree when

aggregating their structure information.

Several studies [9–11] are representative whole-graph embedding methods based on deep learning.

Teheri et al. [9] extract node sequences from given graphs by traversing the graphs and listing their nodes

in order of visit. To traverse a graph, [9] uses several algorithms such as random walk or the all-pairs

shortest-path algorithm. It then uses the node sequences to train an RNN autoencoder and encodes those

sequences into fixed-length vectors using the trained RNN autoencoder. Finally, the final embedding

vector of each graph is obtained by averaging the encoding vectors of the node sequences extracted from

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

1410 | J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020

the graph.

Yanardag and Vishwanathan [10] divide graphs into their sub-structures (e.g., sub-graphs, sub-tree

patterns, or random-walk sequences), trains a deep learning model on their sub-structures, and then

generates their embedding vectors using the trained deep learning model. Because the number of sub-

structures of graphs increases rapidly as the size of the graphs increases, [10] uses a deep learning model

to learn the characteristics of the sub-structures of the graphs effectively. When training the deep learning

model, it uses the edit distance to measure the similarity between sub-structures or between graphs.

Narayanan et al. [11] apply doc2vec [12] to graph embedding, where doc2vec is an embedding method

that extends word2vec [13] to document embedding. As a document can be considered as a set of words,

a graph can be seen as a set of subgraphs. The authors [11] propose the graph2vec model that divides

each graph into subgraphs and trains a neural network on the subgraphs, whose goal is to maximize the

probability that subgraphs belonging to the same graph appear together. When training the neural

network, it represents each subgraph as a one-hot vector and uses a skip-gram model. Once the model is

trained, each graph is input into the model and the values of the hidden layer of the model become the

embedding vector of the graph.

In our previous work [14], we presented preliminary results of using an LSTM autoencoder for

weighted graph embedding. Compared with [14], we provide a more comprehensive study and analysis

of a graph embedding technique for weighted graphs based on LSTM autoencoders. In this paper, we

investigate the effects of various node encoding schemes, various loss functions of LSTM autoencoders,

and various final embedding vector generation methods.

However, except [14], most existing deep learning-based whole graph embedding methods, including

[9], [10], and [11], do not consider the weights of edges in graphs, but only consider the structure

information of graphs (i.e., connections between nodes) to generate embedding vectors.

2.2 Deep Learning Models

This section briefly describes the deep learning model used in this paper, i.e., an LSTM autoencoder,

before presenting the proposed method.

2.2.1 Long short-term memory

LSTM) [15] is a neural network architecture proposed to overcome the vanishing gradient problem of

the traditional RNN. The vanishing gradient problem is that as new data continue to arrive, the influence

of old data decreases drastically. Because of this problem, the traditional RNN has a disadvantage that it

does not have long-term memory and predicts the next data by considering only recently arrived data.

LSTM solves this vanishing gradient problem by adding a cell state to each unit in the network.

Furthermore, each unit is extended with an input gate, a forget gate, and an output gate. In Fig. 2, xt and

yt represent the input and output at time t, and the output of a hidden node at time (t – 1) comes back

as its input at time t. The forget gate determines how much of the previous state is retained and the input

gate determines how much of the current input will be used. The output gate determines how much of

the current state is passed out. LSTM uses these gate structures and cell state to selectively store

information from previous states. As a result, LSTM can solve the vanishing gradient problem and shows

better performance because it uses old data to predict the next data.

Minji Seo and Ki Yong Lee

J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020 | 1411

Fig. 2. The architecture of LSTM.

2.2.2 Autoencoder

An autoencoder [16] is a representative neural network architecture for unsupervised learning, whose

goal is to learn the hidden representation of data. As shown in Fig. 3, an autoencoder has the same number

of nodes in its input and output layers and a smaller number of nodes in its hidden layers. An autoencoder

is trained with the purpose of reconstructing its input, i.e., minimizing the difference between the input

(x1, x2, x3, x4, x5) and the output (y1, y2, y3, y4, y5). Because the number of nodes in hidden layers is smaller

than those in the input layer, it is possible to obtain compressed or noise-removed data from the hidden

layers [17]. An autoencoder is mainly composed of an encoder and a decoder. The encoder plays the role

of extracting the features of the input data, and the decoder plays the role of reconstructing the input data

from the extracted features. As a result, once the training of the autoencoder is completed, the features of

the input data can be obtained from the bottleneck layer, which is located in the middle of the model.

In the proposed method, we extract node-weight sequences from given graphs and train an LSTM

autoencoder on those sequences. An LSTM autoencoder is an autoencoder for sequence data, where the

encoder and decoder have the LSTM architecture. Once the LSTM autoencoder is trained, we can obtain

the encoding vector of each node-weight sequence by inputting it into the LSTM autoencoder and taking

the values of the bottleneck layer.

Fig. 3. The architecture of an autoencoder.

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

1412 | J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020

3. Proposed Method

In this section, we present the proposed graph embedding technique for weighted graphs. The proposed

graph embedding technique consists of three steps: node-weight sequence extraction, node-weight

sequence encoding, and final embedding vector generation. We now describe each step in detail.

3.1 Node-Weight Sequence Extraction

The purpose of the proposed method is to generate embedding vectors for given weighted graphs that

represent both the structure and weight information of the graphs. Given weighted graphs, the proposed

method first extracts node-weight sequences from each graph. A node-weight sequence of a graph is a

sequence of nodes and weights in the graph, listed in the order in which they are visited, starting from a

specified node in the graph. Fig. 4 shows an example of a weighted graph and a node-weight sequence

extracted from the graph, which starts from node D.

Fig. 4. An example of extracting a node-weight sequence from a graph.

Let G1, G2, ⋯, GN be weighted graphs to be embedded. Unlike the previous methods, we first extract

node-weight sequences from each Gi (i = 1, 2, ⋯, N), which contain both the structure and weight

information of Gi. Let Ni be the set of nodes in Gi. For each node ݊(ଵ) ∈ Ni, the proposed method traverses

all nodes of Gi starting from ݊(ଵ) to extract a node-weight sequence of Gi. In this paper, we use the

breadth-first search (BFS) algorithm to traverse all nodes of Gi. We then generate a sequence listing all

nodes and weights in their order of visit, which is expressed as [[݊(ଵ), ݊(ଶ), ݓ(ଵ)], [݊(ଶ), ݊(ଷ), ݓ(ଶ)], ⋯,

[݊(|ீ೔|ିଵ), ݊(|ீ೔|), ݓ(|ீ೔|ିଵ)]], where |Gi| denotes the number of nodes in Gi. Here, ݊(ଵ), ⋯, ݊(|ீ೔|) represent

nodes listed in order of visit according to the BFS algorithm, and ݓ(௜) represents the weight of the edge

between ݊(௜) and ݊(௜ାଵ). Through this process, a total of |Gi| node-weight sequences are extracted from

Gi, each of which starts at each node in Gi. Therefore, for given graphs G1, G2, ⋯, GN, a total of |G1| +

|G2| + ⋯ + |GN| node-weight sequences are obtained.

Note that we use the BFS algorithm to extract node-weight sequences from a graph. The BFS algorithm

first visits the nodes close to the starting node and then visits the distant nodes later. It is known that if

the neighbors extracted by the BFS algorithm are similar, there is a structural equivalence between the

graphs [18]. Also, it is known that the order of nodes visited by the BFS algorithm represents the structure

of the graph very well [18].

3.2 Node-Weight Sequence Encoding

Once we extract node-weight sequences from G1, G2, ⋯, GN, the next step is to encode the extracted

node-weight sequences into fixed-length vectors. For this purpose, we train an LSTM autoencoder on the

Minji Seo and Ki Yong Lee

J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020 | 1413

extracted node-weight sequences. We then use the trained LSTM autoencoder to encode each node-

weight sequence into a fixed-length vector. However, in order to input a node-weight sequence into an

LSTM autoencoder, it is necessary to encode each node label into a number. In this paper, we use the

ordinal encoding method and the one-hot encoding method, respectively. The ordinal encoding method

lists the labels of nodes in a certain order and encodes each label into its order in the list. For example, if

we are given the labels of nodes ‘A’, ‘B’, …, ‘Z’, then we can list them in alphabetical order and encode

‘A,’, ‘B’, …, ‘Z’ into 1, 2, …, 26, respectively. When the number of node labels is L, the one-hot encoding

method encodes each node label as an L-dimensional 0-1 vector where only the corresponding element

is 1. For example, in the above case, we can encode ‘A’, ‘B’, …, ‘Z’ into [1, 0, 0, …, 0], [0, 1, 0, …, 0],

…., [0, 0, 0, …, 1], respectively, where each vector is 26-dimensional.

After we encode node labels using either of the two methods, we train an LSTM autoencoder on node-

weight sequences. Fig. 5 shows the architecture of the LSTM autoencoder used in the paper. The LSTM

autoencoder we used in this paper consists of 7 layers. Like a conventional autoencoder, the LSTM

autoencoder we used consists of an encoder, a decoder, and a bottleneck layer. The top 3 layers are the

encoder layers, which receive a node-weight sequence of arbitrary length, extract its features, and encode

them into a 64-dimensional vector. The fourth layer is the bottleneck layer, which plays the role of

converting a 64-dimensional vector into a sequence form to prepare the reconstruction of the original

node-weight sequence. The bottom 3 layers are the decoder layers, which reconstruct the original node-

weight sequence from the output of the fourth layer.

Fig. 5. The architecture of the LSTM autoencoder used for node-weight sequence encoding.

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

1414 | J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020

In Fig. 5, the arrows between layers represent the direction of data flow. The left block in each layer

shows the name of that layer and the right block shows the shapes of input and output data of that layer,

where the first, second, and third elements of a shape represent the batch size, the number of data, and

the dimension of data, respectively. The top layer has the name “input_1” and its input and output have

the shape of (None, None, 3), which means that the batch size and the length of a sequence are not fixed

and each sequence consists of 3-dimensional vectors (i.e., [݊(௜), ݊(௜ାଵ), ݓ(௜)]). The next two layers, named

“lstm_1” and “lstm_2”, correspond to the encoder layers, which have the LSTM architecture. The layer

“lstm_1” compresses an input sequence into a 128-dimensional vector and the layer “lstm_2” compresses

a 128-dimensional vector into a 64-dimensional vector. The layer named “lambda_1” converts a 64-

dimensional vector into a sequence form by repeating the values of the vector to prepare the

reconstruction of the original sequence. The next two layers, named “lstm_3” and “lstm_4”, correspond

to the decoder layers, which have the LSTM architecture. The layer “lstm_3” reconstructs the 64-

dimensional vector from the output of the layer “lambda_1” and the layer “lstm_4” reconstructs the 128-

dimensional vector from the output of the layer “lstm_3”. Finally, the last layer, named

“time_distributed_1”, is a fully-connected layer and plays the role of reconstructing the original sequence

from the output of the layer “lstm_4”.

Using the LSTM autoencoder described above, we can encode each node-weight sequence with a

different length into a fixed-length vector. To do this, we train the LSTM autoencoder on all the extracted

node-weight sequences. Then, we can obtain the encoding vector of each node-weight sequence by

inputting it into the trained LSTM autoencoder and extracting the output of the layer “lstm_2”, which is

a 64-dimensional vector. Each encoding vector represents the characteristics of the corresponding node-

weight sequence.

When we train an LSTM autoencoder, we need to define its loss function, which represents the

difference between the input and output of the LSTM autoencoder. The goal of training an LSTM

autoencoder is to minimize the difference between its input and output. In this paper, we use a

combination of the following three loss functions to train the LSTM autoencoder:

 Mean squared error (MSE): MSE is one of the most widely used measures for the difference

between input and output, which is defined as follows:

MSE = 1݉ ෍(ݕ௧௥௨௘௜ − ௣௥௘ௗ௜)ଶ௠ݕ
௜ୀଵ (1)

In Eq. (1), m is the number of training data, ݕ௧௥௨௘௜is the correct output for the ith training data, and ݕ௣௥௘ௗ௜is the output of the model for the ith training data. In our case, ݕ௧௥௨௘௜is the ith node-weight

sequence and ݕ௣௥௘ௗ௜ is the node-weight sequence reconstructed by the LSTM autoencoder for ݕ௧௥௨௘௜. We used MSE as the first loss function.

 Kullback-Leibler Divergence (KLD): KLD is a metric used to measure the difference between

two probability distributions, which is defined as follows: KLD = (ܳ||ܲ)௄௅ܦ = ෍ܲ(݅) ݃݋݈ ܲ(݅)ܳ(݅)௜ (2)

In Eq. (2), P and Q are the distributions of the correct outputs and the outputs of the model,

Minji Seo and Ki Yong Lee

J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020 | 1415

respectively. P(i) and Q(i) are the probability of the ith correct output and the ith output of the

model to occur, respectively. We used the sum of MSE and KLD, denoted by MSE+KLD, as the

second loss function.

 Categorical cross-entropy (CCE): CCE is a measure of the difference between two probability

distributions when the output is represented by a one-hot vector. CCE is defined as follows:

CCE = −෍ܲ(݅) log (ܳ(݅))௜ (3)

In Eq. (3), P, Q, P(i), and Q(i) have the same meanings as in Eq. (2). CCE is frequently used for

a model where the output layer is a softmax layer. We used the sum of MSE and CCE, denoted by

MSE+CCE, as the third loss function.

In this paper, we used the three loss functions (i.e., MSE, MSE+KLD, and MSE+CCE) to train the

LSTM autoencoder. We present the effect of using the three loss functions in Section 4.

3.3 Final Embedding Vector Generation

Once we obtain the encoding vectors for all the node-weight sequences, which are extracted from G1,

G2, ⋯, GN, we can generate the final embedding vector Vi for each Gi (i = 1, 2, ⋯, N). For a graph Gi, let ݒଵ, ݒଶ, ⋯, ݒ|ீ೔| be the encoding vectors of the node-weight sequences extracted from Gi. We can think of

each ݒ௜ as representing partial information about the structure and weights of Gi. Thus, there can be many

ways to combine ݒଵ, ݒଶ, ⋯, ݒ|ீ೔| to generate the final embedding vector Vi for Gi. In this paper, we use

three methods to generate Vi from ݒଵ, ݒଶ, ⋯, ݒ|ீ೔|, whose goal is to preserve the information contained in ݒଵ, ݒଶ, ⋯, ݒ|ீ೔| as much as possible.

 Mean vector: Vi is generated as the mean vector of ݒଵ, ݒଶ, ⋯, ݒ|ீ೔|, which can be expressed as

follows:

௜ܸ = |௜ܩ|1 ෍ݒ௜|ீ೔|
௜ୀଵ (4)

 Trimmed mean vector: Vi is generated as the trimmed mean vector of ݒଵ, ݒଶ, ⋯, ݒ|ீ೔|, which can

be expressed as follows:

௜ܸ,௝ = |௜ܩ|1 − 2ቐ෍ݒ௜,௝ − max൛ݒଵ,௝, … , ೔|,௝ൟீ|ݒ − min ൛ݒଵ,௝, … , |೔|,௝ൟ|ீ೔ீ|ݒ
௜ୀଵ ቑ (5)

In Eq. (5), ௜ܸ,௝ and ݒ௜,௝ represent the jth element in ௜ܸ and ݒ௜, respectively (j = 1, 2, …, 64). In other

words, ௜ܸ,௝ is the average of ݒଵ,௝, … , ೔|,௝ excluding their maximum and minimum values. Thisீ|ݒ

method can eliminate the effect of outliers among ݒଵ,௝, … , .೔|,௝ீ|ݒ

 Mode vector: Vi is generated as the mode vector of ݒଵ, ݒଶ, ⋯, ݒ|ீ೔|, which can be expressed as

follows:

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

1416 | J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020

௜ܸ,௝ = ݁ݑ݈ܽݒ_ݐ݊݁ݑݍ݁ݎ݂_ݐݏ݋݉ ൛ݒଵ,௝, … , ೔|,௝ൟ (6)ீ|ݒ

In Eq. (6), the function most_frequent_value returns the most frequent value among ݒଵ,௝, … , .೔|,௝ீ|ݒ
If there are multiple most frequent values, most_frequent_value returns their average value.

In Section 4, we present the performance of the proposed method for each of the above three methods,

respectively.

4. Experiments

4.1 Experimental setting

In order to confirm whether the proposed method actually generates similar embedding vectors for

similar weighted graphs, we evaluated the performance of the proposed method using synthetic and real

datasets. For the synthetic dataset, we defined three graphs A, B, and C shown in Fig. 6, their shapes

being derived from the actual compounds (i.e., Propane, Benzene, and Tetrahedrane, respectively). For

each of the three graphs, we created two groups of graphs that are similar in shape to the graph, but with

significantly different weight ranges. As a result, a total of six groups of graphs were created, as shown

in Table 1. We synthetically generated 100 graphs for each group by randomly selecting one or two nodes

from the group’s base graph (i.e., A, B, or C) and randomly performing one of the following operations:

(1) create and connect a new node, (2) delete the node, (3) modify the label of the node, or (4) modify

the weight of an edge connected to the node slightly (±10%). As a result, graphs in the same group have

similar shapes and weights, while graphs in different groups have different shapes or weights.

Fig. 6. The shapes of the three graphs used to generate the synthetic dataset.

Minji Seo and Ki Yong Lee

J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020 | 1417

Table 1. Synthetic graph groups used in the experiment

Group Description Weight range

1
Graphs similar in shape to Graph A

0.0–30.0

2 50.0–185.0

3
Graphs similar in shape to Graph B

0.0–30.0

4 50.0–185.0

5
Graphs similar in shape to Graph C

0.0–30.0

6 50.0–185.0

Benzen

(Group 1)
Hydroxylamine

(Group 2)
Lorazepam
(Group 3)

Beta-lactam
(Group 4)

Macrolide
(Group 5)

Fig. 7. The five real chemical compounds used in the experiments.

For the real dataset, we used the real chemical compound dataset provided by PubChem [19]. PubChem

is a large database provided and managed by the National Center for Biotechnology Information (NCBI),

which contains structures, descriptions, and experimental results for more than 100 million chemicals.

From PubChem, we selected five compounds (i.e., Benzene, Hydroxylamine, Lorazepam, Beta-lactam,

and Macrolide), which are shown in Fig. 7. Then, for each compound, we selected 20 similar compounds

with the help of experts. Thus, in this case, a total of five graph groups were created.

In the experiments, we evaluated whether the proposed graph embedding technique generates similar

embedding vectors for similar weighted graphs and different embedding vectors for different weighted

graphs. For this purpose, we conducted the experiments as follows: given groups of weighted graphs, we

first generated the embedding vectors of all the graphs in the groups using a graph embedding technique

to be evaluated. After that, we randomly selected a fixed number of graphs from each group. Then, for

each selected graph, we extracted the k graphs with embedding vectors closest to the graph’s embedding

vector among all the graphs in the dataset. We then measured the precision at k, which is the proportion

of graphs belonging to the same group as the selected graph among the extracted k graphs. Therefore, the

higher the value of precision at k, the better the embedding technique generates similar vectors for similar

weighted graphs and different vectors for different weighted graphs. We used the cosine distance to

measure the distance between two embedding vectors.

In the experiments, we compared the proposed method with the methods proposed in [9] and [11],

denoted by RNN autoencoder and Graph2vec, respectively. For the proposed method, we used the ordinal

and one-hot encoding to encode node labels, respectively, and trained the LSTM autoencoder with the

loss functions MSE, MSE+KLD, and MSE+CCE, respectively. Also, we used the mean, trimmed mean,

and mode vectors to generate final embedding vectors, respectively. In Section 4.2, we present the

performance of the proposed method for each case. For RNN autoencoder and Graph2vec, we set all their

parameters to the values used in [9] and [11], respectively.

We implemented all the methods in Python 3.7.4 using the Jupyter Notebook 6.0.1, and built an LSTM

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

1418 | J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020

autoencoder using Keras 2.2.5 and TensorFlow GPU 1.14.0. All the experiments were performed on a

PC running Ubuntu 16.04.6 LTS equipped with Intel Core i7-9700K 3.60 GHz CPU, 16 GB RAM, 1 TB

HDD, and NVIDIA Titan V GPU. We released our code on GitHub at https://github.com/minkky/Graph-

Embedding.

4.2 Evaluation Results

4.2.1 Performance evaluation on synthetic dataset

In this section, we present the performance evaluation results on the synthetic dataset. In this

experiment, we first generated the embedding vectors of all the graphs in the synthetic dataset using the

proposed graph embedding technique. It took about 3 hours and 40 minutes to extract node-weight

sequences, train an LSTM autoencoder, and generate the final embedding vectors of all the graphs. The

total number of node-weight sequences extracted from all the graphs was 4,200. We then randomly

selected 10 graphs from each of the six groups in the synthetic dataset. For each selected graph, we

extracted the k graphs with the closest embedding vectors, which were generated by the proposed method,

and then measured precision at k. We measured precision at k by increasing k from 10 to 50. Fig. 8 shows

the performance of the proposed method on the synthetic dataset. Fig. 8(a), (b), and (c) show precision

at k when node labels are encoded using the ordinal encoding, while Fig. 8(d) and (e) show precision at

k when node labels are encoded using the one-hot encoding. Also, Fig. 8(a) and (d), Fig. 8(b) and (e), and

Fig. 8(c) show precision at k when the loss function is MSE, MSE+KLD, and MSE+CCE, respectively

(Note that we do not present precision at k when node labels are encoded using the one-hot encoding and

the loss function is MSE+CCE because the LSTM autoencoder failed to be trained in that case, i.e., the

loss function diverged). In each subfigure of Fig. 8, we compared precision at k when using the mean,

trimmed mean, and mode vectors to generate final embedding vectors.

In Fig. 8, we can see that embedding vectors generated by the proposed method always show more

than 95% precision at k. This means that the proposed method correctly generates similar embedding

vectors for similar weighted graphs and dissimilar embedding vectors for graphs with different structures

or different weights. Therefore, we can confirm that the proposed method is very effective for embedding

weighted graphs.

When comparing the ordinal and one-hot encoding, the one-hot encoding shows slightly better

performance than the ordinal encoding, especially when the mean or trimmed mean vectors are used to

generate final embedding vectors. This is because, when training the LSTM autoencoder with node labels

encoded by the ordinal encoding, nodes with similar encoding values may be misinterpreted as similar

nodes. For example, if node labels “A”, “B”, and “C” are encoded as 1, 2, and 3, respectively, by the

ordinal encoding, “A” and “B” may be misinterpreted as being more similar than “A” and “C”. Thus, by

being trained in this way, the LSTM autoencoder may learn wrong features from node-weight sequences.

On the other hand, this problem is alleviated when we use the one-hot encoding.

When comparing the three loss functions, MSE+KLD and MSE+CCE generally show better

performance than MSE. This means that when training the LSTM autoencoder, it is more effective to

consider not only the difference between each input and output, but also the difference between the

distributions of inputs and outputs.

Minji Seo and Ki Yong Lee

J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020 | 1419

(a) (b)

(c) (d)

(e)

Fig. 8. Performance evaluation results of the proposed method on the synthetic dataset: (a) ordinal, MSE,
(b) ordinal, MSE+KLD, (c) ordinal, MSE+CCE, (d) one-hot, MSE, and (e) one-hot, MSE+KLD.

Finally, when comparing the three final embedding vector generation methods (i.e., the mean, trimmed

mean, and mode vectors), we can see that the mean and trimmed mean vectors show similar good

performance, while the mode vector shows relatively poor performance. This is because the mode vector

reflects only some of the values in the encoding vectors and ignores the rest. On the other hand, the mean

and trimmed vectors can represent the information contained in all the encoding vectors well. Especially,

the trimmed mean vector sometimes shows better performance than the mean vector because it removes

the effect of outlier values in the encoding vectors. Therefore, using the mean or trimmed mean vectors

seems to be a more effective way to generate final embedding vectors.

Fig. 9(a) shows the precision at k of the proposed method, RNN autoencoder [9], and Graph2vec [11]

on the synthetic dataset. For the proposed method, we used the one-hot encoding to encode node labels,

MSE+KLD as the loss function, and the trimmed mean vectors to generate final embedding vectors. In

Fig. 9(a), we can see that the proposed method always shows more than 96% precision at k regardless of

k, while RNN autoencoder and Graph2vec show only about 50% precision at k. Since RNN autoencoder

and Graph2vec only consider the structure of graphs and not the weights of edges in graphs, they generate

almost similar embedding vectors for two different groups where graphs have similar shapes but have

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

1420 | J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020

very different weights (e.g., Group 1 and Group 2 in Table 1). As a result, the embedding vectors for the

two different groups are hardly distinguishable from each other. Thus, for each selected graph, its k most

similar graphs contain graphs from the two different groups in almost the same proportion (i.e.,

50%:50%). On the other hand, the proposed method can generate different embedding vectors for the

two different groups by considering the weights of edges in graphs.

(a) (b)

(c) (d)

Fig. 9. Performance comparison of the proposed method with the existing methods: (a) synthetic dataset
(precision at k), (b) synthetic dataset (recall and AUC), (c) real dataset (precision at k), and (d) real dataset
(recall and AUC).

Fig. 9(b) shows the recall and area under the receiver operating characteristic curve (AUC) of the three

methods on the synthetic dataset. To measure the recall, for each selected graph, we first extracted the

100 graphs with embedding vectors closest to the selected graph’s embedding vector among all the graphs

in the dataset. We then computed the recall as the number of graphs belonging to the same group as the

selected graph in the extracted 100 graphs, divided by the number of graphs belonging to the same group

as the selected graph in the whole dataset (i.e., 100). On the other hand, the AUC measures how well the

ranking of graphs in terms of their distances from the selected graph reflects the true ranking. An AUC

of 1 represents a perfect ranking and 0 represents a perfect inverse ranking. From Fig. 9(b), we can see

that the proposed method shows better performance than the other methods also in terms of both the

recall and AUC. Therefore, we can confirm that the proposed method is effective in generating

embedding vectors for weighted graphs.

4.2.2 Performance evaluation on real dataset

In this section, we show the performance evaluation results on the real compound dataset. The real

dataset consists of five groups of similar graphs, each of which consists of 20 chemical compounds. In

this experiment, we first generated the embedding vectors of all the graphs in the real dataset using the

proposed method, RNN autoencoder, and Graph2vec, respectively. In the case of the proposed method,

Minji Seo and Ki Yong Lee

J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020 | 1421

it took about 1 hour and 40 minutes to extract node-weight sequences, train an LSTM autoencoder, and

generate the final embedding vectors of all the graphs. The total number of node-weight sequences

extracted from all the graphs was 650. We then randomly selected five graphs from each group and, for

each selected graph, extracted the k graphs with embedding vectors closest to the selected graph’s

embedding vector among all the graphs. We measured precision at k by increasing k from 1 to 15. Because

there are 10 types of atoms in the real dataset, we encoded each atom using the ordinal encoding as in

Table 2.

Table 2. Atoms in the real dataset and their encoding

Atom C N O F P S Cl As I Hg

Encode 1 2 3 4 5 6 7 8 9 10

Fig. 9(c) shows the precision at k of the proposed method, RNN autoencoder, and Graph2vec on the

real dataset. For the proposed method, we used MSE as the loss function and the trimmed mean vector

as the final embedding vector generation method. In Fig. 9(c), the proposed method always shows more

than 94% precision at k for all k values. Note that, in particular, the proposed method shows 100%

precision at k for k = 1, which corresponds to finding the most similar graph. On the other hand, we can

see that RNN autoencoder and Graph2vec show only about 65%–90% precision at k. We can also see

that the performance of RNN autoencoder decreases significantly as k increases. This is because RNN

autoencoder does not consider the weights of edge (i.e., the binding force between atoms) so it generates

similar embedding vectors for compounds with different binding forces but similar shapes. Graph2vec

also shows worse performance than the proposed method because Graph2vec only considers the degree

of each node but not weights between nodes. On the other hand, the proposed method generates more

effective embedding vectors for chemical compounds by considering not only the structure of compounds

but also the binding force between atoms. Fig. 9(d) shows the recall and AUC of the three methods on

the real dataset. Also in this case, the proposed method shows better performance than the other methods

in terms of both the recall and AUC. Thus, we can conclude that embedding vectors generated by the

proposed method capture similarities between weighted graphs more effectively.

5. Conclusion

In this paper, we propose an effective, deep learning-based graph embedding technique for weighted

graphs. Unlike the previous deep learning-based graph embedding techniques, which consider only the

structure of graphs and not the weights of edges in graphs, the proposed method considers both the

structure and weights of graphs to generate their embedding vectors. To do so, the proposed method

extracts node-weight sequences from given graphs and encodes them into fixed-length vectors using an

LSTM autoencoder. Finally, the proposed method combines these encoding vectors to generate the final

embedding vector for each graph.

In the proposed method, we used two encoding methods to encode node labels (i.e., the ordinal and

one-hot encoding), three loss functions to train an LSTM autoencoder (i.e., mean-squared error,

Kullback-Leibler divergence, and categorical cross entropy), and three generation methods to generate

final embedding vectors (i.e., the mean, trimmed mean, and mode vectors). Through extensive

A Graph Embedding Technique for Weighted Graphs Based on LSTM Autoencoders

1422 | J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020

experiments, we investigated the performance differences of the proposed method when each of these

methods is used. The experimental results on the synthetic and real datasets show that the proposed

method outperforms the existing methods significantly in generating embedding vectors for weighted

graphs. Therefore, we can conclude that the proposed method can be effectively used in measuring the

similarity between weighted graphs.

Compared with previous work for graph embedding, this paper makes a contribution by extending the

target of graph embedding to weighted graphs for the first time. Although the main idea of the proposed

method itself is mainly based on [9], we extend node sequences used in [9] to node-weight sequences to

consider the weights of edges in graphs. Furthermore, the contributions of this paper also come from the

following: (1) In order to make the proposed method suitable for weighted graphs, there are many options

or alternatives in each step, including the node encoding method, the loss function of the LSTM

autoencoder, and the final embedding vector generation method. In this paper, we propose at least two or

three strategies for each step, which constitute the originality of this paper. (2) Through extensive

experiments, we comprehensively evaluate and analyze the effect of each of these strategies. As a result,

we can gain insight about the effect of using each strategy. (3) We not only show the effectiveness and

practical applicability of the proposed method by using both synthetic and real datasets, but also publish

our code on GitHub. Therefore, this paper makes a practical contribution. In future work, we will study

fast and effective embedding methods for large-scale weighted graphs because the execution time of the

proposed method increases directly with the number of graphs as well as the number of nodes in graphs.

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning &

Evaluation (IITP) grant funded by the Korea government (MSIT) (No.2018-0-00269, A research on safe

and convenient big data processing methods).

References

[1] M. J. J. Ghrabat, G. Ma, I. Y. Maolood, S. S. Alresheedi, and Z. A. Abduliabbar, “An effective image retrieval
based on optimized genetic algorithm utilized a novel SVM-based convolutional neural network classifier,”
Human-centric Computing and Information Sciences, vol. 9, article no. 31, 2019.

[2] D. Lee and J. H. Park, "Future trends of AI-based smart systems and services: challenges, opportunities, and
solutions," Journal of Information Processing Systems, vol. 15, no. 4, pp. 717-723, 2019.

[3] E. Gultepe and M. Makrehchi, “Improving clustering performance using independent component analysis
and unsupervised feature learning,” Human-centric Computing and Information Sciences, vol. 8, article no.
25, 2018.

[4] H. Cai, V. W. Zheng, and K. C. C. Chang, "A comprehensive survey of graph embedding: problems,
techniques, and applications," IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 9, pp.
1616-1637, 2018.

[5] P. Goyal and E. Ferrara, "Graph embedding techniques, applications, and performance: a survey,"
Knowledge-Based Systems, vol. 151, pp. 78-94, 2018.

[6] S. V. N. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, "Graph kernels," Journal of
Machine Learning Research, vol. 11, pp. 1201-1242, 2010.

[7] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, "The graph neural network model,"
IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 61-80, 2009.

Minji Seo and Ki Yong Lee

J Inf Process Syst, Vol.16, No.6, pp.1407~1423, December 2020 | 1423

[8] T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," in

Proceedings of International Conference on Learning Representations (ICLR), Toulon, France, 2017.

[9] A. Taheri, K. Gimpel, and T. Berger-Wolf, "Learning graph representations with recurrent neural network

autoencoders," in Proceedings of the 24th ACM SIGKDD Conference of Knowledge Discovery and Data

Mining: Deep Learning Day, London, UK, 2018.

[10] P. Yanardag and S. V. N. Vishwanathan, "Deep graph kernels," in Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, Sydney, Australia, 2015, pp. 1364-

1374.

[11] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y., and S. Jaiswal, "graph2vec: learning

distributed representations of graphs," in Proceedings of 13th International Workshop on Mining and

Learning with Graphs (MLG), Halifax, Canada, 2017.

[12] Q. Le and T. Mikolov, "Distributed representations of sentences and documents," in Proceedings of

International Conference on Machine Learning, Beijing, China, 2014, pp. 1188-1196.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, "Efficient estimation of word representations in vector space,"

2013 [Online]. Available: https://arxiv.org/abs/1301.3781.

[14] M. Seo and K. Y. Lee, “A weighted graph embedding technique based on LSTM autoencoders,” in

Proceedings of the Korea Software Congress (KSC), Pyeongchang, South Korea, 2019.

[15] S. Hochreiter and J. Schmidhuber. "Long short-term memory," Neural computation, vol. 9, no. 8, pp.1735-

1780, 1997.

[16] M. A. Kramer, "Nonlinear principal component analysis using autoassociative neural networks," AIChE

Journal, vol. 37, no. 2, pp. 233-243, 1991.

[17] S. Maity, M. Abdel-Mottaleb, and S. S. Asfour, "Multimodal biometrics recognition from facial video with

missing modalities using deep learning," Journal of Information Processing Systems, vol. 16, no. 1, pp. 6-29,

2020.

[18] A. Grover and J. Leskovec, "node2vec: scalable feature learning for networks," in Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 2016,

pp. 855-864.

[19] PubChem: an open chemistry database at the National Institutes of Health [Online]. Available:

https://pubchem.ncbi.nl m.nih.gov/.

Minji Seo https://orcid.org/0000-0002-4720-8250
She received the B.S. degree from the Division of Computer Science, Sookmyung
Women's University, Korea, in 2018 and M.S. degree from the Department of
Computer Science, Sookmyung Women’s University, Korea, in 2020. Her research
interests include databases, data mining, deep learning and graph embedding.

Ki Yong Lee https://orcid.org/0000-0003-2318-671X
He received his B.S., M.S., and Ph.D. degrees in Computer Science from KAIST,
Daejeon, Republic of Korea, in 1998, 2000, and 2006, respectively. From 2006 to
2008, he worked for Samsung Electronics, Suwon, Korea as a senior engineer. From
2008 to 2010, he was a research assistant professor of the Department of Computer
Science at KAIST, Daejeon, Korea. He joined the faculty of the Division of Computer
Science at Sookmyung Women’s University, Seoul, in 2010, where currently he is a
professor. His research interests include database systems, data mining, big data, and
data streams.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

