• Title/Summary/Keyword: LQ control

Search Result 233, Processing Time 0.032 seconds

A design of PID controller for servomechanism using optimal control theory (최적 제어 이론을 이용한 서어보 메카니즘의 PID 제어기 설계)

  • 최중락;김재환;김영수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.488-492
    • /
    • 1986
  • This paper presents a design method for PID controller using optimal control theory. The procedures of the applied method consist of (1) sampling the system response to the test signal, (2) processing the sampled data using RPE method to identify the parameters of the plant, (3) calculating the optimal value of the PID controller parameters using LQ theory. This controller is implemented on the digital computer and applied to real servomechanism, yielding satisfactory result.

  • PDF

The Combined Classical/Modern Technique for Optimal Fesign of Robust Motion Controller (강인한 운동제어기의 최적 설계를 위한 고전적 기법과 현대적 기법의 결합)

  • 김삼수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.485-492
    • /
    • 1990
  • This paper propose a optimal design method for robust notion controllers of under-water vehicles using the combined technique between classical and modern theories. The proposed method is presented which utilizes classical control methods to obtain a good robustness and modern control methods to set optimal gains. LQ, SVD, multivariable frequency analysis and Bode-Root Locus (BRL) plot are used.

  • PDF

LQG/LTR METHODS FOR LINEAR SYSTEMS WITH DELAYS IN STATE AND CONTROL (상태 및 입력변수에 시간지연이 있는 시스템을 위한 LQG/LTR 방법)

  • Lee, Sang-Jeong;Gwon, Uk-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.139-143
    • /
    • 1987
  • In this paper, the stability margins of LQ regulators for the systems with delays in both state and control are analyzed and represented explicitly in terms of system parameters when the systems are open-loop stable. And, the LQG/LTR method is considered as a robust control design method. The results in this paper generalize the well-known ones for ordinary systems.

  • PDF

Design of GA-LQ Controller in SVC for Power System Stability Improvement (전력시스템 안정도 향상을 위한 SVC용 GA-LQ 제어기 설계)

  • Hur, D.R.;Park, I.P.;Chung, M.K.;Chung, H.H.;Ahn, B.C.;Kim, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.226-228
    • /
    • 2002
  • This paper presents a new control approach for designing a coordinated controller for static VAR compensator system. A SVC constructed by a Fixed Capacitor and a Thyristor Controlled Reactor is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. A design of linear quadratic controller based on optimal controller depends on choosing weighting matrices. A coordinated optimal controller is achieved by minimizing a quadratic performance index using dynamic programming techniques. The selection of weighting matrices is usually carried out by trial and error which is not a trivial problem. We proposed a efficient method using GA of finding weighting matrices for optimal control law. Thus, we prove the usefulness of proposed method to improve the stability of single machine-infinite bus with SVC system.

  • PDF

The design method research of the control system for Autonomous Underwater Vehicle (AUV) using Linear Matrix Inequality (LMI)

  • Nasuno, Youhei;Shimizu, Etsuro;Aoki, Taro;Yomamoto, Ikuo;Hyakudome, Tadahiro;Tsukioka, Satoshi;Yoshida, Hiroshi;Ishibashi, Shojiro;Ito, Masanori;Sasamoto, Ryoko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1060-1065
    • /
    • 2005
  • An Independent Administrative Corporation Japan Agency for Marine-Earth Science and Technology (JAMSTEC) is developing light-and-small Autonomous Underwater Vehicles (AUV)$^{1)}$, named 'MR-X1' (Marine Robot Experimental 1), which can cruise, investigate and observe by itself without human's help. In this paper, we consider the motion control problem of 'MR-X1' and derive a controller. Since the dynamic property of 'MR-X1' is changed by the influence of the speed, the mathematical model of 'MR-X1' becomes the nonlinear model. In order to design a controller for 'MR-X1', we generally apply nonlinear control theories or linear control theories with some constant speed situation. If we design a controller by applying Linear Quadratic (LQ) optimal control theory, the obtained controller only compensates t e optimality at the designed speed situation, and does not compensate the stability at another speed situations. This paper proposes a controller design method using Linear Matrix Inequalities (LMIs)$^{2),3),4)}$, which can adapt the speed variation of 'MR-X1'. And examples of numerical analysis using our designed controller are shown.

  • PDF

Vibration Control of Working Booms on Articulated Bridge Inspection Robots (교량검사 굴절로봇 작업붐의 진동제어)

  • Hwang, In-Ho;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.421-427
    • /
    • 2008
  • A robot crane truck is developed by the Bridge Inspection Robot Development Interface(BRIDI) for an automated and/or teleoperated bridge inspection. This crane truck looks similar to the conventional bucket crane, but is much smaller in size and light-weight. At the end of the telescoping boom which is 12m long, a robot platform is mounted which allows the operator to scan the bridge structure under the deck trough the camera. Boom vibration induced by wind and deck movement can cause serious problems in this scanning system. This paper presents a control system to mitigate such vibration of the robot boom. In the proposed control system, an actuator is installed at the end of the working boom. This control system is studied using a mathematical model analysis with LQ control algorithm and a scaled model test in the laboratory. The study indicates that the proposed system is efficient for the vibration control of the robot booms, thereby demonstrating its immediate applicability in the field.

Performance analyses of RHLQG/FIRF controller

  • Yoo, Kyung-Sang;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.88-94
    • /
    • 1993
  • In this paper we analyze the RHLQG/FIRF optimal.contol law presented in [4,5] in order to stabilizes a stochastic linear time varying systems with modeling uncertainty. It is shown by the frequency domain analysis that the RHC is robuster than the LQ control law. Explicit LTR procedures are given to improve the robust performance of RHLQC/FIRF cotrol law. Using the mismatching function technique [8], we propose an LTR method which makes the RHLQG/FIRF controller recover the feedback properties of the R.HC law. Also we compare the LTR performance of the RHLQC/FIRF via simulation with conventional LTR methods.

  • PDF

An LMI Approach for Designing Sliding Mode Observers (슬라이딩 모드 관측기 설계를 위한 선형행렬부등식 접근법)

  • Choi Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.9-12
    • /
    • 2005
  • This paper presents an LMI-based method to design sliding mode observers for a class of uncertain systems. Using LIs we derive an existence condition of a sliding mode observer guaranteeing a stable sliding motion. And we give explicit formulas of the observer gain matrices. We also consider sliding mode observer design problems under an α-stability constraint or an LQ performance bound constraint. Finally, we give a numerical design example.

The design of the robust hybrid controller for the construction using an active dynamic vibration absorber

  • Lee, Sang-Kyu;Lee, Jin-Ho;Hwang, I-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.75.4-75
    • /
    • 2001
  • This paper designs the robust hybrid controller for the multi degree-of-freedom system having uncertainty caused by modeling error and disturbances. The controlled plant is the construction which has an active dynamic vibration absorber on the top and is excited by the El Centre earthquake at the base. The active controller designed by the LQR(Linear Quadratic Regulator) and H-infinity control theory. The robustness of the hybrid H$\infty$ controller is compared with that of the hybrid LQ controller from computer simulation.

  • PDF

A robust generalized predictive controls

  • Kwon, Wook-Hyun;Noh, Seonbong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.203-207
    • /
    • 1992
  • In this paper, a new GPC(Generalized Predictive Control) algorithm which is robust to disturbances isproposed. This controller minimizes the LQ cost function when the disturbance maximizes this cost function. The solution is obtained from the min-max problem which can be solved by differential game theory and has the non-recursive form which does not use the Riccati equation. Its another solution for state space models is investigated.

  • PDF