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Abstract

In this paper we analyze the RHLQG/FIRF optimal con-
trol law presented in [4,5] in order to stabilizes a stochastic
linear time varying systems with modeling uncertainty. It is
shown by the frequency domain analysis that the RHC is ro-
buster than the LQ control law. Explicit LTR procedures are
given to improve the robust performance of RHLQG/FIRF con-
trol law. Using the mismatching function technique [8], we
propose an LTR method which makes the RHLQG/FIRF con-
troller recover the feedback properties of the RHC law. Also
we compare the LTR performance of the RHLQG/FIRF via
simulation with conventional LTR methods.

1 Introduction

Robust stabilization has been one of the hot issues in con-
trol system theory during the past decades and thus there exist
many literatures on this problem(1,2]. Most existing method
are,however, proposed for linear time-invariant systems based
o infinite horizon optimization of a nonsingular_cost function-
al. For lincar time-varying systems, such methods require a
fairly good information about the system parameter over all
times, which is an impractical assumption and a major defect
of such methods so far.

Recent results have shown that the formal mathematical syn-
thesis procedures based on LQG with loop transfer recovery,
the so-called LQG/LTR techniques, provide a broad fiexibility
in achieving the necessary loop transfer functions. However, in
spite of its remarkable robustness, the LQG/LTR techniques
may suffer from poor stability property for the systems with
parameter variation, nonminimum phase zeros or time-varying
elements. Also another remarkable results have been reported
that the LQ control law may acquire far off unstable modes for
small variations in the plant parameter [3). These findings cast
some doubts practically on the asymptotic recovery, even in
the minimum phase case, since the recovered stability margins
Lannot guarantee the LQG design robustness for all possible
quadratic performance criteria.

The above reason has provided a motivation for investigation
new methods to robustly stabilize stochastic linear time-varying
systems and the RIILQG/FIRF (Receding lorizon LQG with
FIR filter) is presented by Kwon et al.[4] and Yoo et al.[5} as

one method. It is noted that RHLQG/FIRF requires quantita-
tive knowledge over a finite time interval around at the current
time, which is a practical assumption. The closed-loop stability
of the RHLQG/FIRF is analyzed in this paper and it is shown
that the RIC law [6] has better robustness properties than
the LQ control law, which can be proven by the FARE(Fake
Algebraic Riccati Equation){7]. Also the transfer function of
the FIR filter is derived here to analyze its frequency domain
characteristics and RHLQG/ FIRF robustness properties in fre-
quency domain.

The LTR. property of the RHLQG/ FIRF controller is ana-
Iyzed here and it is shown that the loop gain transfer function
for the RIILQG/FIRF designs recovers those of the RIC law
as the data observation window T approaches to zero and thus
it recovers the associated robustness properties of RIHC. At this
stage, for investigating the LTR performance of RHLQG/FIRF,

the mismatching function method [8,9] will be applied, where
it is a phase difference of the target and achieved loop trans-
fer function. The LTR performance of the RHLQG/FIRF is
compared with the conventional LTR procedure {10,11,12] and
Chen’s method[8] by checking the singular values of the mis-
match function.

This paper is organized as follows: In Section 2 we propose the
RHLQG/FIRF control algorithm. In Section 3 we analyze the
robustness of the RHC in frequency domain. In Section 4 we
propose the LTR procedure of the RHLQG/FIRF control law
and verify the LTR performance of the RHLQG/FIRF using
the mismatching function. In Section 5, a numerical example is
given to exemplifly the LTR performance of the RHLQG /FIRF
compared to the Chen’s and conventional LTR methods. In
Section 6 conclusions will be given.

2 Receding Horizon LQG Controller
with FIRF

The pariicular theory we shall be concerned with here is
that of the so-called RIILQG/FIRF problem. Let us consider
the continuous time-varying state-space model

£(t) = A (t) + Gou(t) + Boau(l) )

¥ = Ca () + (1), (2)

where z(-), u(-) and z(-) are the state vector, the control input
vector, and the observation vector, respectively. The initial

- 88 —



state vector z(0) is a random variable with E{z(0)] = ng and
Co[z(0)] = Pp and the system noise w(-) and the observation
noise v(-) are zero-mean white with covariances E{uw( HwT(s)} =
Qu8(t — 8) and E[v(t)vT(s)) = 18(t — 3), respectively. We also
assume that z(0), w(.), and v(-) are uncorrelated each other.
Although all matrices Ay, By, Cy, Gpand Q¢ are time-varying, we
will delete the subscript ¢, which represents time-dependence,
for the convenience of mathematical description.

The RHLQG/FIRF controller combines the receding horizon
controller [6] with the optimal FIR filter developed in 4] to
stabilize stochastic linear time-varying systems. The RHLQG/
FIRF problem is, under the system description of (1) and (2),
to design a feedback control law which minimizes the control
cost function

T T
Je = BT+ DRa(e+ T+ [ 1T0Qme)

+uT(7) Ryu(7)}dT}, )

where (1) ;= Cz(§), Tt is the width of the control cost interval
and F., Qy and R, are weighting matrices with

F.20, @20, Ry>0.

We assume that available information at present time t are
Fe, Qy and R, over the interval [¢ ¢+ T;] and @, R and the
observation data z over the past juterval {t— T, t].

The solution to the RHLQG/FIRF problem is achieved by two
step procedure. The first step is to determine the optimal FIR
filter as follows:

t t
3t 7):/”110,1; 7)z(r)dr+/”n,(f,f; Tyu(r)dr, (4)

where the impulse responses I1(t,-; T) and Hy(t, T) are cal-
culated by

H(ts; T =85t DLt s T, t-T<s<t  (5)

d
5‘;1,(:,3; o) = —[AT+S(t0)BQBNL(t s 0),
0 T—t4+s<a<s T (6)
Lits; T~ t4+9)=CT
-(%S(t,a) = ~§(t,0) A= ATS(4,0)+CTC-S(L o) BQBTS(t0) (7)
S(+,0)=0, 0<o<T
Hu(t, 5 T) =/ H(t, 3 TYCH(r,8)Gdr, t— T<s<t. (8)
T
The second step is to find the control law which will minimize
the cost function (3). The control law is determined by RHC

method|6], using the FIR filter £(¢] 7T) as the state estimator
as shown below:

u(f) = —R;\GTK (4 1+ TOE(t] T) = —Kpno(t, THE(L] T),
(9
where Kpic(t, T) i= RIGTK(4 t+ T2) is the receding hori-
zon control gain matrix and K(t, t+ To) satisfies the Riccati
differential equation

8
-EK(G‘ t+T) = ATK(o,t+ T)+ K(o,t+ T)A+ cTQ,C
~K(o,t+ T)GR;'GTK (0, t+ To) (10)

K(t+ T, t+ T)

]

F, t<e<t+T.

The RITLQG/FIRF control law guarantees the closed-loop sta-
bility under some condition as follows:

THEOREM 1 [4]  If the aystem of (1) and (2) is uni-
Jormly completely controllable and observable and if G, B,
Q, Q,, and R, are uniformly baunded, then the RIHL.QG/
FIRF (9) stabilizes the system asjmptotically with F. =
ool, T'> ¢, and T, > £, where £, and £, are the controlla-
bility and observability indexz, respectively.

In case of linear time-invariant systems, the RHLQG/FIRF has
very simple forms with the time-invariant state estimator and
the constant gain feedback control as follows:

t ¢
2t T) =/ H(t-mn 7)z(T)dT+/ Hu(t— 7, THu(7)dT,
T T
(1)
W(t) = —KpncTa(t| T = —-RGTK(T)E(t| T),  (12)
where K(7) is the constant solution of (10) on the interval

[0, T;] and the impulse responses /i (-; T) and H.(:; T) are cal-
culated by

H(ET) =S (¢ DL(ET), 0St<T (13)
J Uto) = ~IAT+S(0)BQBNL( ),
0<T-t<a<T (14)
LET-H=¢T

;;S(a) = _5(0)A — ATS(0) + CTC - S(0)BQBTS(0) (15)

S(4,0)=0, 0<o<T

Ho(t 1) = /lrn(f, T)CH(t— 1)Gdr, 0< o< T  (16)

In this case, we can take T and 7T, as any positive finite values.

3 Robustness of the Receding Horizon
Control

In this section we consider robustness property of the RHC
law. The LQ control law has been known to have excellent, gain
and phase margin in time-invariant systems. However, it ap-
pears to have poor performance when applied to the parameter
variation and time varying systems. Hence we here compare
the robustness performance of RHC with that of the LQ, which
shows that RIC has better robustness property than the ro-
bustness property of LQ control law.

First of all, we introduce the FARE(Fake Algebraic Riccati E-
quation) [7] for the frequency domain equality of (10).
LEMMA 1 Consider the FARE

Qo) = K(o,t+ TIGR'G"K(o,t+ To)
~ATK(o,t4+ T)) — K(o,t+ T)A (7

and assume that

i) |4, B] is a controllable pair,

ii) Qo) > Oand [A, Q(0)'/?]is a stabilizable pair.

Then the RHC law (8) asymptotically stabilizes the plant.

Proof: 1f we define Qo) = CTQC + K{a, t+ To), then (17)
comes from (10). The connection between monotonicity of
K (o, t+ Tp) and stabilizability of [A, Q(0)"/?] then emerges [7].
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Note that it is the stabilizability of the pair [A, Q(¢)/?] (when
Q(c) > 0) that determines the asymptotic stability of (17),
since then K{o, t+ T;) satisfies a legitimate ARE. oan

Let us investigate the frequency domain characteristics of RIIC
for the time-invariant system as shown in the following theorem:

THEOREM 2 The return difference matriz Fryc(s) of
the system with the RITC satisfies the following relation in
the frequency domain:

Fiyo(—jw) RuFruciw) = Ru+ G (—ju)Qe(jw)G, (18)
where $(s) := (s] — A)”! and

- o
Q= CTQC + 5K (7, t4 Tl (19)

0ooo

The above result comes from the same procedure as that of
the LQ control law [13] using the definition (19). It is noted
that @ of (19) is constant in case of the time-invariant system.
From Theorem 2 we intuitively recognize that it is possible
to show the robustness of the RHC compare to that of the
LQ control law. Note that in RHC problem K(-,t+ T} is a
monotone increasing function and that EBTK(Tv t+ )=t 2 0
for all t. Thus we have Q@ > C7Q,C and omar{ Frjycw)} <
Um{F[cl)(jw)} where Fro(s) is the return difference matrix of
the LQ regulator. We have then

Tmacdl = Friic(w)) € maa{l = FdGw)},  (20)

which implies that the RI1C is robuster in stability than the LQ
control law since the smaller the upper bound of the maximum
singular value of the closed-loop transfer function a,,,-{] —
F~1(w)} is, the robuster is the feedback control system.

4 LTR of RHLQG/FIRF

In this section we consider three factors of the RIILQG/
FIRF control law. First, using the results in Section 3, we
present the structure of RHLQG/FIRF controller which is de-
termined by the frequency domain transfer function of the RIIL
QG /FIRF. Second, for enhancing the robustuess of the RIILQG
JFIRF control law, we introduce a new LTR method which
makes the loop transfer function of the RHLQG/FIRF control
law recover that of the RIIC law. Finally, we compare the L-
TR performance of the RHLQG/FIRF control law with that
of Chen’s [8] method and show that the former has the better
LTR performance than the latter.

4.1 Loop Transfer Function of RHLQG/FIRF
Controller

Let us derive the loop transfer function for the time-invariant
system with the RIILQG/FIRF controller as shown in Fig.4.1.
It is constructed by the gain of the RHC and FIR filter transfer
function.

The transfer function of the time-invariant FIR filter is ob-
tained from (11) and (12) as follows:

X (s) 1 (s; T) Y(s) + Hy(s; TYU(s)

H(s; T)Y(s) — Hy(s; TYiKpue X(s)  (21)

i

Fig. 4.1 The structure of the RHLQG/FIRF controller

Then (21) yields
X(s) =1 + Hy(s; M Krnc) " H(s; T) Y(s) (22)
and we have

U(s) = ~Kniyc X(s)

—Kpucll + 1(s; D Kppel™ H(s; T) Y(s)

1

= ~Kgyr(s)Y(s) (23)
where Kp/p(.v) = KR"(;[’ + ll,,(.v; 7)]([("(:]“‘ ”(8; ’n.

Thus, we can obtain the following loop transfer function of the

RHLQG/FIRF control law:
Tryr t= Kgryr(s)P(s)

= Kancll + Ho(s; DK rncl" H(s; YOG (24)

where #(s) = (s/ — A)~1. We can derive the relationship be-
tween I1,(3; T) and (s; T) as follows:

LEMMA 2 The transfer function H,(s; 1) is represented
by
(s T) = I - H(s; O(a)C (25)

Proof: Applying the Laplace transformation to (16), we have

Hus;T) = /om[/rll(r;’])C(P(t—T)Gdr]e"”dt

LT[/tT”(T; NCHt - "')dT]C"’"dl.G

i

T T
[) Hin T)C[/O H(t— 7)e"d]drC

T
/ H( TYCle™ " - e~ 11drd(s)G (26)
0
Here we can show that [4]

a
f H(r, T)Ce Ardr = 1. @7)
0

Substitution of (27) into (26) gives (25) 0oa

4.2 LTR Procedure of the RHLQG/FIRF

In order to enhance the robustness and performance of the
RIIL QG/FIRF coutral Jaw, we shall apply in this subscction
the LTR method to it. We will show that, as T approaches to
zero, the loop transfer function of RIILQG/ FIRF is able to
recover that of the RHC.
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LEMMA 3 The loop transfer function of RHLQG/FIRF
controller recovers that of RHC as T approaches to zero,
ie.,

Trye(s) = Krucll + Hu(ss Knucl™ H{s; TYCH(s)G
—  Kpic(sl = AY G = Truc(s) (28)

as T— 0.
Proof: From (13)-(16) we can obtain

H(s; NC S L(%; TYC

T T
= |/ Wr, TICTR'CH(r, 1).;4*'/ WT- ¢ TICTRCe*'dt
o 0

T T

- f ¥, NCTR C(r, Thar|™ / W TYCTR- € ATy
0 ]

- ()

as T -+ 0, where ¥(-,-) is the transition matrix of {AT 4
S(e)BQBT]. We have then from (29)

Ho(s;T) = {1 — H{s; D|(s] —~ A)'G— 0 (30)

as T — 0. Thus we can obtain the LTR property (24) of
RHLQG/FIRF control law. ooo

To examplify the LTR procedure of the RHLQG/ FIRF let us
examine the scalar system.

In the scalar system we can show some limiting properties with
respect to H(s; T) and H,(s; T) as follows:

Example:
2 (2 LT (o4 )T
H(nn = m e} ¢ 7”.]“ - et}
2 a
- ic—v(m(’“ﬂ (+ )(’+7))
= m(a B)
) ™)
c
where 2 = Pq, a = =31, 8 = =5, v = Va? + BIr7),

a—-f= QT} Hence we have H(s; T)c — 1 as T — 0. Also we
have

et = ey )l'—e“'*’"]— . Aaeh)
9 -
- 21((:4»1)( a4 - ( e
= 0 ax T — 0O (32)

Thus we can obtain the LTR procedure in scalar case as follows:

Tyr = Kancll + Hu(s; DKruc)™ H(s; De(s] —a)'g

1

Kpnc(sl —a)'g

Thnc as T-—0.

i

Note this LTR results implies that the LTR procedure is per-
formed by diminishing T only and the LTR can be performed
independently of the RHC gain Kgnc.

4.3 LTR performance of the RHLQG/FIRF

The purpose of this subsection is that the LTR performance
of the RIILQG/FIRF control law is examined by using the
mismatching function proposed by Chen et. al [8]. Most often
in the literature, the maximum and minimum singular value
graphs of the target and achieved loop transfer matrices are
drawn with respect to w and are then compared. These graphs
could be misleading. Although the singular values of target
and achieved loop transfer matrices may match perfectly, the
difference or mismatch between them. 1t is the best way is to
check the singular values of the mismatch function between the
target and achieved loop transfer function. Let us consider the
target loop transfer function of the RIILQG /FIRF is given
L(3) = Kpuc®(s)G. The transfer function of the observer
based controller, i.e. the transfer function from the output y of
the plant to itis

Cryr(s) = Kpnel! + (s TV Kprel™ His; T) (33)

where Cp,p(s) is the controller of the RHLQG/FIRF and the
open-loop transfer function when the loop is broken at the input
point of the plant is L, = Cp/p(s)P(s) where P(s) = CSG.
Thus the error or mismatch between the target loop transfer
function L(s) and that realized by the FIR observer is

Epsr = L(8) = Lo(s) (34)

where Ep;p is the error function of the RHLQG/FIRF. The
following two lemma represents the result of the mismatching
error conditions for analysis of LTR performance, which can be
shown by {8].

LEMMA 4 The error between the target loop transfer func-
tion L(s) and that realized by the RHLQG/FIRF controller

i3 given by
Egp = Myp{(gie+ Hu(s T)Mpp} ™!

x{(I'+ 1u(s; N Kpuc) - 1{s; NC} H2)G

(35)
where
Aln/p(s) = Knne{l + H(s; T)C)'] (36)
Mpp(8) is the mismatching function of the RHLQGYFIRF.
ooa

LEMMA 5 Perfect matching condition of LTR is given
as follows:

En/p =0 lff AI(]LJ) =

where {2 i3 the set of all 0 < w < 0o for which L,(jw) and
L(jw) are well defined(i.e. all required inverses exiat).

0 for all wen 37

0oon
The robust stability and nominal performance of a system are
directly reflected in the singular values of sensitivity and com-
plementary sensitivity functions whereas the level of recov-
ery(i.e. the size of Eg/p(jw)) is directly dependent on the
singular values of M(jw). With this point of view, {12] de-
rive some analytical expressions for the discrepancy between
the desired and the achieved sensitivity and complementary
sensitivity functions. The results of this things are given in the
following lemma.
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LEMMA 6 [8] Consider the configuration of Fig.4.1 we
have the following bounds on all singular values i = 1 to
m of Spyr and Tp/p:

loiSrr(Uw)] — ailSFW
Fmaz[SF(w))

< Omas[Mpyr(fw)), (38)

and . .
lodTr/rGw)] - ail TrG )l
Tz [SF(jw)]
where Spyr is the sensitivity function of the RHLQG/FIRF and

Trr is the complementary sensitivity function of the RHLQ
G/FIRF.

< ”nm{MR/F(jw)]u (30)

Proof: Appendix E in [8]. ono

The expressions given above can be used to analyze the trade-
off between good recovery as indicated by Tmaz[Mpp(jw)] and
robustness and performance as reflected in the sensitivity and
complementary sensitivity functions.

The following theorem shows that the LTR performance of
RHLQG/ FIRF achieves better degree of recovery than the
Chen’s method and conventional observer based controller.
THEOREM 3 Let us assume that

Ominl LG W)} = Gminl Kritc((Gw) ~A) Gl 2 @ forall we D. (40)

where « is arbitrary constant , @ < 1 for some frequency re-
gion of interest, D. Then for all w € D, the mismatch between
the target loop transfer function and the RHLQG/FIRF is less
than the Chen's method and conventional LQG/LTR. More
specifically, we have
Omaz | ELQe/L TRUW)] 2 Oz |Ecnen (§)] 2 0mas| Eryr(iw)]
Jorall we D, (41)

where Ep/p(s) is as in (35), Erqajur(s) and Ecygpn(s) are
as in [8).

Proof: Recalling the expression for Ergeiirr(iw), we have
omar  {ELoostrr(Gw)l

= Oma MG+ MG + Kig#iw)G))

2 Omaal MG omin ([l + MGw)] '}
X Tminll + Kpo®(iw)] 1)
o FmalMGollominll + Kio¥(jw)G]
Fmazll + M(Gw)]
2 OmaEcien(fw)a(jw) (42)

where .
a(w) = ZninlKre¥Gw) Gl
Oaz|l + M(Gw)]
and Kpq is a LQ gain. Now by our assumption, om..[M{Fw)]
is € o and gpmin [K1.g®(jw)Gl is > 1 for all w € D and hence
“a(jw) is 2 1 for all w € D. Thus

Omaz| ErgayLraGw)] 2 Omesl Ecpn (Gw)]- (13)

Since we have the following RHLQG/FIRF controller related
by the first line of (42)

Omas|MRF]Ominl Kglc + Hu(s; TYMpyp) ™!
x[I + Hy(s; 1) Krue — H(s; TYCSG). (44)

By the monotonicity of the Riccali equation, we can compare
the magnitude of the RHC gain K pyc with the LQ gain Kpq.
Hence we can obtain the following relation Kpyc > Ki.q since

the monotone increasing property of the finite interval Riccati
equation. Therefore following is satisfied

oma.r[l”R/F] < Omae|Mc(jw)) (45)
Omar[(Kihic + Hu(s; T Mpe] ™" 2 0l + Mc(G)]™' (46)
Omaz|({ + Hu(83 DK rEC)) € Omar[l + K1q®G) 7

Hence the following relation is obtainded
mas{ MoG)I + M) (I + KLo®(jw)Gl}
2 mar{Mpyr|K iy + Hu(s; Mpyr) ™!
x[(1 + Hu(s; T)Kpuc) — H(s; TYC|2G). (48)
Thus we have
Omazl Ecien(§w)) 2 Omas| Enyr(jw)). (49)

and we have the result (41) from(43) and (49)

5 Examples

In this section we presents two examples to compare the
LTR performance of the RHLQG/FIRF with Chen’s method
and conventional observer based LQG/LTR approach. Perfor-
mances of all methods are here represented by the maximum
singular value of the LTR error function. Therefore the LTR
performance of the each control methods is quantified by mis-
matching function proposed by the {8].

To show the performance of the RHLQG/FIRF we shall now
consider two kinds of systems with minimum phase zero and
nonminimum phase zeros.

Case 1. The simulation is performed on minimum phase sys-
tems given by Doyle [11]

s = o 1], o
[ R g 1

2 lz+v (51)

u+ [ _‘;21 ] w (50)

I

y

with E(w) = E(v) = 0 and Blw()w(r)] = E[u(e(7)] =
6(t— 7). An LTR procedure of the RHLQG/FIRF control for
minimum phase system is given in Fig. 5.1 The mismatching
errors and maximum error value is given in Fig. 5.2, Fig. 5.3,
respectively. This results show that the LTR performance of
the RHLQG/FIRF has better performance than Chen's and
LQG/LTR method when the LTR procedure is applied to sys-
tems with miniinum phase systems to input break point.

Case 2. The simulation is performed on nonminimum phase
systems is given by Sacki {14] by some modification of Doyle’s

plant.
1 0 35
i = [_03 d4}x+[1]u+[_m}w (52)
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y = [2 ——0.1]z+v (53)

with E(w) = E(v) = 0 and Efuw(uw(7)] = E[{)v()] =
8(t— 7). BEach LTR procedure is compared in Fig. 5.5 and
the mismatching errors and maximum error values are given
in Fig. 5.6, Fig. 5.7, respectively. This resulls also show that
the LTR performance of the RHLQG/FIRF has better per-
formance than Chen'’s and LQG/LTR method when the LTR
procedure is applied to systems with nonminimum phase sys-
tem to input break point. Clearly all the examples support the
theoretical improvement, given carlier and demonstrate that the
RHLQG/FIRF approach is much better than Chen’s method
and LQG/ LTR method.

6 Conclusions

In this paper we have presented the robust performance of
the RHLQG/FIRF. The robustness of the RHC is analyzed in
frequency domain comparing the LQ control given in Theorem
2. The robustness of the FIR filter is analyzed here compared
with kalman filter by its transfer function of the FIR filter.
These results are given in Lemma 3. For enhancing the robust-
ness of the RHLQG/FIRF we proposed here the LTR approach
which is given in Section 3. It is noted that the RHLQG/FIRF
always recovers its robust performance hecause of remarkable
robust property of the RHC which is given by the Section 4. To
conform the LTR performance here we applied Chen's method
[8] to RHLQG/FIRF in Secction 5. The examples showed that
the RHLQG/FIRF has better LTR performance than Chen’s
method and LQG/LTR approach in terms of smaller values of
the mismatching function.
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