• 제목/요약/키워드: LPS-induced

검색결과 2,120건 처리시간 0.031초

봉독(蜂毒)이 Lipopolisaccharide로 유발된 Chronic Obstructive Pulmonary Disease 병태(病態) Model에 미치는 영향 (The Effects of Bee Venom on Lipopolysaccharide (LPS)-induced Chronic Obstructive Pulmonary Disease (COPD))

  • 박동희;정승기;정희재
    • 대한한방내과학회지
    • /
    • 제32권2호
    • /
    • pp.203-216
    • /
    • 2011
  • Objectives : This study was conducted to evaluate the protective effects of bee venom on lipopolysaccharide (LPS)-induced chronic obstructive pulmonary disease (COPD). Methods : In this study, LPS was administrated to Balb/c mice to induce a disease that resembles COPD. 2 hr prior to LPS administration, mice were treated with bee venom via an intraperitoneal injection. Total cell number and neutrophils number in bronchoalveolar lavage fluid were counted and pro-inflammatory cytokines were also measured. For histologic analysis, periodic acid Schiff (PAS) and hematoxylin and eosin (H&E) stains were evaluated. Proliferating cell nuclear antigens (PCNA) were also assessed by immunohistochemistry. Results : On 7 days after LPS stimulation, influx of neutrophils significantly decreased in the bee venom group, compared with the COPD group. In addition, TNF-a and IL-6 levels decreased in bee venom group. Histological results also demonstrated the attenuation effect of bee venom on LPS-induced lung inflammation. Conclusions : These data suggest that bee venom has protective effects on LPS-induced lung inflammation. Therefore, bee venom may represent a novel therapeutic agent for lung inflammation and in particular for COPD.

Mechanisms Underlying the Effects of LPS and Activation-induced Cytidine Deaminase on IgA Isotype Expression

  • Park, Seok-Rae;Kim, Hyun-A;Chun, Sung-Ki;Park, Jae-Bong;Kim, Pyeung-Hyeun
    • Molecules and Cells
    • /
    • 제19권3호
    • /
    • pp.445-451
    • /
    • 2005
  • Activation-induced cytidine deaminase (AID) is needed for Ig class switch recombination (CSR). We explored the effect of LPS on the expression of AID during B cell differentiation, and the role of AID in IgA isotype expression. In normal spleen B cells, LPS increased AID transcription up to 48 h post-stimulation, i.e. around the time of Ig CSR. TGF-${\beta}1$ and AID were required for IgA expression, and LPS contributed to $TGF{\beta}1$-induced IgA production largely by inducing AID. Interestingly, LPS repressed AID transcription in $sIgA^+$ B cells but still stimulated IgA production mainly by increasing the rate of IgA secretion. Our data indicate that LPS contributes to $TGF{\beta}1$-induced IgA isotype expression in at least two ways: by stimulating AID transcription before CSR and by enhancing the IgA secretion rate after CSR.

Carbonic Anhydrase Inhibitors가 Lipopolysaccharide에 의해 유도된 골흡수에 미치는 영향 (EFFECTS OF CARBONIC ANHYDRASE INHIBITORS ON THE LPS-INDUCED BONE RESORPTION IN VITRO)

  • 박양호;차경석
    • 대한치과교정학회지
    • /
    • 제24권1호
    • /
    • pp.115-123
    • /
    • 1994
  • To study bone resorption mechanism, effect of LPS on the $^{45}Ca$ release from fetal rat ulnae and radii, and effects of carbonic anhydrase inhibitors on the LPS-induced bone resorption in organ culture were studied. Ulnae and radii were removed from 19 day old fetal rats, prelabelled by subcutaneous injection of $200{\mu}Ci\;^{45}CaCl_2$ into their mother on the 17th day of gestation. Radioactivities of $^{45}Ca$ released into media were determined after 24, 48 and 72 hours. Effects of LPS and carbonic anhydrase inhibitors were observed by the ratio of $\%$ release of $^{45}Ca$ between paired control and experimental group. The observed results were as follows : 1. $LPS(1{\mu}g/ml)$ supplemented in media for 72hours increased the $^{45}Ca$ release significantly after 48 and 72 hours of culture and $LPS(10{\mu}g/m1)$ increased the $^{45}Ca$ release significantly after 72 hours of culture. 2. LPS-induced $^{45}Ca$ release was not inhibited significantly by 1mM sulfanilamide but inhibited significantly by 10mM sulfanilamide after 48 and 72 hours of culture. 3. LPS-induced $^{45}Ca$ release was not inhibited significantly by 0.1mM dichlorphenamide but inhibited significantly by 1mM dichlorphenamide after 48 and 72 hours of culture. 4. LPS-induced $^{45}Ca$ release was not inhibited significantly by 1mM acetazolamide but inhibited sighificantly by 5mM acetazolamide after 72 hours of culture.

  • PDF

Effect of quercetin on the production of nitric oxide in murine macrophages stimulated with lipopolysaccharide from Prevotella intermedia

  • Cho, Yun-Jung;Kim, Sung-Jo
    • Journal of Periodontal and Implant Science
    • /
    • 제43권4호
    • /
    • pp.191-197
    • /
    • 2013
  • Purpose: Nitric oxide (NO) is a short-lived bioactive molecule that is known to play an important role in the pathogenesis of periodontal disease. In the current study, we investigated the effect of the flavonoid quercetin on the production of NO in murine macrophages activated with lipopolysaccharide (LPS) from Prevotella intermedia, a pathogen related to inflammatory periodontal disease, and tried to elucidate the underlying mechanisms of action. Methods: LPS was isolated from P. intermedia ATCC 25611 cells by the standard hot phenol-water method. The concentration of NO in cell culture supernatants was determined by measuring the accumulation of nitrite. Inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) protein expression, phosphorylation of c-Jun N-terminal kinase (JNK) and p38, inhibitory ${\kappa}B$ $(I{\kappa}B)-{\alpha}$ degradation, and signal transducer and activator of transcription 1 (STAT1) phosphorylation were analyzed via immunoblotting. Results: Quercetin significantly attenuated iNOS-derived NO production in RAW246.7 cells activated by P. intermedia LPS. In addition, quercetin induced HO-1 protein expression in cells activated with P. intermedia LPS. Tin protoporphyrin IX (SnPP), a competitive inhibitor of HO-1, abolished the inhibitory effect of quercetin on LPS-induced NO production. Quercetin did not affect the phosphorylation of JNK and p38 induced by P. intermedia LPS. The degradation of $I{\kappa}B-{\alpha}$ induced by P. intermedia LPS was inhibited when the cells were treated with quercetin. Quercetin also inhibited LPS-induced STAT1 signaling. Conclusions: Quercetin significantly inhibits iNOS-derived NO production in murine macrophages activated by P. intermedia LPS via anti-inflammatory HO-1 induction and inhibition of the nuclear factor-${\kappa}B$ and STAT1 signaling pathways. Our study suggests that quercetin may contribute to the modulation of host-destructive responses mediated by NO and appears to have potential as a novel therapeutic agent for treating inflammatory periodontal disease.

암유발 생쥐에서 리포폴리사카라이드에 의해 유도된 사이토카인이 생산에 미치는 인도메타신의 영향 (Effect of Indomethacin on the Lipopolysaccharide-induced Production of Cytokines in Tumor-bearing Mice)

  • 채병숙
    • 약학회지
    • /
    • 제45권6호
    • /
    • pp.715-723
    • /
    • 2001
  • Indomethacin is well known as a prostaglandin (PG) E$_2$ synthetase inhibitor which has antipyretic and anti-inflammatory effects and reduces the risk of cancer Growing tumors greatly induce hypersensitive responses to lipopolysaccharide (LPS). Thus, this study was investigated the effect of indomethacin on the LPS-induced production of cytokines in sarcoma-bearing ICR mice. Indomethacin at doses of 5mg/kg was administered orally 30 minutes before i.p. injection of LPS (8 mg/kg) 5 times for 7 days. LPS remarkedly increased tumor necrosis factor (TNF)-$\alpha$ and interleukin (IL)-1$\beta$, levels in both serum and splenic supernatants compared with those in controls, while indomethacin significantly reduced the LPS-increased levels of IL-1$\beta$, in both serum and supernatants. LPS significantly enhanced IL-2 levels in serum and interferon (IFN)-${\gamma}$ levels in supernatants, whereas indomethacin did not affect the LPS-increased levels of IL-2 and IFN-${\gamma}$. These data, therefore, indicate that indomethacin may attenuate the pathogenesis of IL-1$\beta$, induced by LPS and maintain the tumoricidal cellular immune effects by LPS-increased production of IL- 2 and IFN-${\gamma}$ in tumor-bearing state.

  • PDF

LPS에 의해 유도된 인지기능 손상모델에 대한 천마 추출물의 방어효과 (Protective Effect of Gatrodiae Rhizoma Extracts on the LPS-Induced Cognitive Impairment Model)

  • 권강범;김하림;김예슬;박은희;강형원;류도곤
    • 동의신경정신과학회지
    • /
    • 제33권3호
    • /
    • pp.277-285
    • /
    • 2022
  • Objectives: Gastrodia elata (GE) has been used to treat cognition impairment, including Alzheimer's disease (AD) in Korea. The purpose of this study was to investigate the effects of GE water extracts (GEE) on the lipopolysaccharide (LPS)-induced AD model in mice. (Aβ). Methods: We classified six groups as follow; group 1: control (CON), group 2: LPS (0.5 mg/kg/day, four times), group 3: 4 mg/kg donepezil (DP), group 4: 100 mg/kg GEE+LPS, group 5: 200 mg/kg GEE+LPS, group 6: 500 mg/kg GEE+LPS. Results: We found that GEE has an effect that inhibits decrease of discrimination index in object recognition test, as well as spontaneous alteration in the Y-maze test by LPS. Treatment with LPS increased amlyloid-β (Aβ) concentration, and decreased brain-derived neurotrophic factor (BDNF) in cerebral cortex of mice. However, GEE significantly protected against LPS-induced Aβ and BDNF changes. Our findings also showed that the inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β)] mRNA and protein were up-regulated by the LPS injection. But GEE significantly suppressed LPS-induced inflammatory cytokines increase in a dose-dependent manner. Conclusions: This study suggests that the GEE may be an effective AD therapeutic agent, in treating neurodegenerative diseases including AD.

15-Deoxy-${\Delta}^{12,14}$-Prostaglandin $J_2$ Upregulates the Expression of LPS-Induced IL-8/CXCL8 mRNA in Vascular Smooth Muscle Cells from Spontaneously Hypertensive Rats

  • Kim, Jung-Hae;Kim, Hee-Sun
    • IMMUNE NETWORK
    • /
    • 제9권2호
    • /
    • pp.64-73
    • /
    • 2009
  • Background: 15d-$PGJ_2$ has been known to act as an anti-inflammatory agent and has anti-hypertensive effects. As a result of these properties, we examined the effect of 15d-$PGJ_2$ on the LPS-induced IL-8/CXCL8 mRNA expression in VSMCs from SHR. Methods: Effect and action mechanism of 15d-$PGJ_2$ on the expression of LPS-induced IL-8/CXCL8 mRNA in VSMCs from SHR and WKY were examined by using real-time polymerase chain reaction, electrophoretic mobility shift assay for NF-${\kappa}B$ avtivity, Western blotting analysis for ERK and p38 phosphorylation and flow cytometry for NAD(P)H oxidase activity. Results: 15d-$PGJ_2$ decreased the expression of LPS-induced IL-8/CXCL8 mRNA in WKY VSMCs, but increased the expression of LPS-induced IL-8/CXCL8 mRNA in SHR VSMCs. The upregulatory effect of 15d-$PGJ_2$ in SHR VSMCs was mediated through PPAR${\gamma}$, and dependent on NF-${\kappa}B$ activation and ERK phosphorylation. However, inhibition of the p38 signaling pathway augmented the upregulatory effect of 15d-$PGJ_2$ on LPS-induced IL-8/CXCL8 mRNA. A NAD(P)H oxidase inhibitor inhibited the upregulatory effect of 15d-$PGJ_2$ on LPS-induced IL-8/CXCL8 mRNA expression in SHR VSMCs, and an increase in NAD(P)H oxidase activity was detected in SHR VSMCs treated with 15d-$PGJ_2$/LPS. Conclusion: Our results indicate that the upregulatory effect of 15d-$PGJ_2$ on LPS-induced IL-8/CXCL8 expression in SHR VSMCs is mediated through the PPAR${\gamma}$ and ERK pathway, and may be related to NAD(P)H oxidase activity. However, p38 inactivation may also play an important role in 15d-$PGJ_2$/LPS-induced IL-8/CXCL8 expression in SHR VSMCs.

Assessment of Lipopolysaccharide-binding Activity of Bifidobacterium and Its Relationship with Cell Surface Hydrophobicity, Autoaggregation, and Inhibition of Interleukin-8 Production

  • Park, Myeong-Soo;Kim, Min-Jeong;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권7호
    • /
    • pp.1120-1126
    • /
    • 2007
  • This study was performed to screen probiotic bifidobacteria for their ability to bind and neutralize lipopolysaccharides (LPS) from Escherichia coli and to verify the relationship between LPS-binding ability, cell surface hydrophobicity (CSH), and inhibition of LPS-induced interleukin-8 (IL-8) secretion by HT-29 cells of the various bifidobacterial strains. Ninety bifidobacteria isolates from human feces were assessed for their ability to bind fluorescein isothiocyanate (FITC)-labeled LPS from E. coli. Isolates showing 30-60% binding were designated LPS-high binding (LPS-H) and those with less than 15% binding were designated LPS-low binding (LPS-L). The CSH, autoaggregation (AA), and inhibition of LPS-induced IL-8 release from HT-29 cells of the LPS-H and LPS-L groups were evaluated. Five bifidobacteria strains showed high levels of LPS binding, CSH, AA, and inhibition of IL-8 release. However, statistically significant correlations between LPS binding, CSH, AA, and reduction of IL-8 release were not found. Although we could isolate bifidobacteria with high LPS-binding ability, CSH, AA, and inhibition of IL-8 release, each characteristic should be considered as strain dependent. Bifidobacteria with high LPS binding and inhibition of IL-8 release may be good agents for preventing inflammation by neutralizing Gram-negative endotoxins and improving intestinal health.

금은화가 LPS로 유발된 급성 폐 손상에 미치는 영향 (Effects of Lonicerae Flos Extracts on LPS-induced Acute Lung Injury)

  • 이창건;최해윤;박미연;김종대
    • 대한예방한의학회지
    • /
    • 제15권1호
    • /
    • pp.49-69
    • /
    • 2011
  • Objective : The object of this study was to observe the effects of Lonicerae Flos (LF) aqueous extracts on lipopolysaccharide (LPS)-induced rat acute lung injury. Method : Five different dosages of LF extracts were orally administered once a day for 28 days before LPS treatments, and then all rats were sacrificed after 5 hour-treatment of LPS. Eight groups of 16 rats each were used in the present study. The following parameters caused by LPS treatment were observed ; body weights, lung weights, pulmonary transcapillary albumin transit, arterial gas parameters (pH, $PaO_2$ and $PaCO_2$) bronchoalveolar lavage fluid (BALF) protein lactate dehydrogenase (LDH), and proinflammatory cytokines tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$) contents, total cell numbers, neutrophil and alveolar macrophage ratios, lung malondialdehyde (MDA), myeloperoxidase (MPO), proinflammatory cytokines TNF-${\alpha}$ and IL-$1{\beta}$ contents. In addition, the histopathologic changes were observed in the lung in terms of luminal surface of alveolus, thickness of alveolar septum, number of polymorphonuclear neutrophils. Result : As results of LPS-injection, dramatical increases in lung weights, pulmonary transcapillary albumin transit increases, increases in $PaCO_2$, decreases in pH of arterial blood and $PaO_2$, increases of BALF protein, LDH, TNF-${\alpha}$ and IL-$1{\beta}$ contents, total cells, neutrophil and alveolar macrophage ratios, TNF-${\alpha}$ and IL-$1{\beta}$ contents increases were detected with decreases in LSA and increases of alveolar septum and PMNs numbers, respectively as compared with intact control. These are means that acute lung injuries (resembling acute respiratory distress syndrome) are induced by treatment of LPS mediated by inflammatory responses, oxidative stress and related lipid peroxidation in the present study. However, these LPS-induced acute lung injuries were inhibited by 28 days continuous pretreatment of 250 and 500mg/kg of LF extracts. Because of lower three dosages of LF treated groups, 31.25 and 62.5 and 125mg/kg did not showed any favorable effects as compared with LPS control, the effective dosages of LF in LPS-induced acute lung injuries in the present study, is considered as about 125mg/kg. The effects of 250mg/kg of LF extracts showed almost similar effects with ${\alpha}$-lipoic acid 60mg/kg in preventing LPS-induced acute lung injuries. Conclusion : It seems that LF play a role in protecting the acute respiratory distress syndrome caused by LPS.

봉약침액(蜂藥鍼液_이 RAW 264.7 세포의 COX-2, P38, ERK 및 JNK에 미치는 영향(影響) (The Effect of Bee Venom on COX-2, P38, ERK and JNK in RAW 264.7 Cells)

  • 심재영;조현철;이성노;김기현
    • 대한약침학회지
    • /
    • 제6권2호
    • /
    • pp.77-90
    • /
    • 2003
  • The purpose of this study was to investigate the effect of Bee Venom on the lipopolysaccharide(LPS), sodium nitroprusside(SNP), hydrogen peroxide($H_2O_2$)-induced expressions of cyclooxygenase-2(COX-2), p38, jun N-terminal Kinase(JNK) and extra-signal response kinase(ERK) in RAW 264.7 cells, a murine macrophage cell line. Method : The expressions of COX-2, p38, JNK and ERK were determined by western blotting with corresponding antibodies. Results : 1. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited significantly LPS and SNP-induced expression of COX-2 compared with control, respectively. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited insignificantly $H_2O_2$-induced expression of COX-2 compared with control, respectively. 2. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited significantly LPS, SNP and $H_2O_2$-induced expression of p38 compared with control, respectively. 3. The 1 and $5\;{\mu}g/ml$ of bee venom inhibited significantly SNP-induced expression of JNK compared with control, respectively. All of bee venom inhibited insignificantly LPS and $H_2O_2$-induced expression of JNK compared with control, respectively. 4. The $5\;{\mu}g/ml$ of bee venom inhibited significantly SNP-induced expression of ERK, the $0.5\;{\mu}g/ml$ of bee venom increased significantly $H_2O_2$-induced expression of ERK compared with control. The 0.5, 1 and $5\;{\mu}g/ml$ of bee venom inhibited insignificantly LPS-induced expression of ERK compared with control, respectively.