• Title/Summary/Keyword: LMI-based H^{\infty} control

Search Result 75, Processing Time 0.03 seconds

Design of Robust PI Controller for DC-DC Converter (DC-DC 컨버터에 대한 강인한 PI 제어기 설계)

  • Lee, Hyun-Seok;Ko, Chang-Min;Park, Seong-Hun;Park, Seung-Kyu;Ahn, Ho-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.997_998
    • /
    • 2009
  • Nowadays DC-DC converter has been used widely in electronic production. It has a high requirement in wide input voltage, load variations, stability, providing a fast transient response and the most important thing is that it can be applied easily and efficiently. However, it is not easy to be controlled because of nonlinear system. This study introduces a fuzzy linear control design method for nonlinear systems with optimal $H^{\infty}$ robustness performance. First, the Takagi and Sugeno fuzzy linear model is employed to approximate a nonlinear system. Next, based on the fuzzy linear model, a fuzzy controller is developed to stabilize the nonlinear system, and at the same time the effect of external disturbance on control performance is attenuated to a minimum level. Thus based on the fuzzy linear model, ��$H^{\infty}$ performance design can be achieved in nonlinear control systems. Linear matrix inequality (LMI) techniques are employed to solve this robust fuzzy control problem. PI control structure is used and the control gains are determined based on $H^{\infty}$ control.

  • PDF

H Sampled-Data Control of Takagi-Sugeno Fuzzy System (타카기-수게노 퍼지 시스템의 H 샘플치 제어)

  • Kim, Do Wan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1142-1146
    • /
    • 2014
  • This paper addresses on a $H_{\infty}$ sampled-data stabilization of a Takagi-Sugeno (T-S) fuzzy system. The sampled-data stabilization problem is formulated as a discrete-time stabilization one via a direct discrete-time design approach. It is shown that the sampled-data fuzzy control system is asymptotically stable whenever its exactly discretized model is asymptotically stable. Based on an exact discrete-time model, sufficient design conditions are derived in the format of linear matrix inequalities (LMIs). An example is provided to illustrate the effectiveness of the proposed methodology.

Optimal Control and Robust Control of Rotating Shaft Using Magnetic Bearings (자기베어링을 이용한 회전축의 최적제어 및 강건제어)

  • Kang, Ho-Shik;Jeong, Namheul;Yoon, Il-Soung;Song, Ohseop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1330-1337
    • /
    • 2004
  • In this study, the equations of motion of a rigid rotor supported by magnetic bearings are derived via Hamilton's principle, and transformed to a state-space form for control purpose. The optimal motion control of rotor magnetic bearing system based on the LQR(linear quadratic regulator) theory is addressed. New schemes related to the selection of the state weighting matrix Q and the control weighting matrix R involved in the quadratic functional to be minimized are proposed. And the robust control of the system with an LMI(linear matrix inequality) based H$_{\infty}$ theory is dealt with in this paper. Loop shapings of TFM (transfer function matrix) are used to increase the performance of control capability of the system. The control abilities of LQR and H$_{\infty}$ controller are compared by simulation and experimental tests and show that the capability of H$_{\infty}$ controller is superior to that of LQR.

Path following of a surface ship sailing in restricted waters under wind effect using robust H guaranteed cost control

  • Wang, Jian-qin;Zou, Zao-jian;Wang, Tao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.606-623
    • /
    • 2019
  • The path following problem of a ship sailing in restricted waters under wind effect is investigated based on Robust $H_{\infty}$ Guaranteed Cost Control (RHGCC). To design the controller, the ship maneuvering motion is modeled as a linear uncertain system with norm-bounded time-varying parametric uncertainty. To counteract the bank and wind effects, the integral of path error is augmented to the original system. Based on the extended linear uncertain system, sufficient conditions for existence of the RHGCC are given. To obtain an optimal robust $H_{\infty}$ guaranteed cost control law, a convex optimization problem with Linear Matrix Inequality (LMI) constraints is formulated, which minimizes the guaranteed cost of the close-loop system and mitigates the effect of external disturbance on the performance output. Numerical simulations have confirmed the effectiveness and robustness of the proposed control strategy for the path following goal of a ship sailing in restricted waters under wind effect.

Tracking Control System Design for the Transfer Crane : Design of Full-order Observer with Weighted $H_{\infty}$ Error Bound (트랜스퍼 크레인의 이송위치제어를 위한 서보계 설계 : 가중 $H_{\infty}$ 오차사양을 만족하는 동일차원 관측기 설계)

  • Kim, Y.B.;Jeong, H.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.12 no.6
    • /
    • pp.42-49
    • /
    • 2008
  • The most important job in the container terminal area is to handle the cargo effectively in the limited time. To achieve this object, many strategies have been introduced and applied to. If we consider the automated container terminal, it is necessary that the cargo handling equipments are equipped with more intelligent control systems. From the middle of the 1990's, an automated rail-mounted gantry crane(RMGC) and rubber-tired gantry crane(RTG) have been developed and widely used to handle containers in the yards. Recently, in these cranes, the many equipments like CCD cameras and sensors are mounted to cope with the automated terminal environment. In this paper, we try to support the development of more intelligent automated cranes which make the cargo handling be performed effectively in the yards. For this plant, the modelling, tracking control, anti-sway system design, skew motion suppressing and complicated motion control and suppressing problems must be considered. Especially, in this paper, the system modelling and tracking control approach are discussed. And, we design the tracking control system incorporating an observer based on the 2DOF servo system design approach to obtain the desired state informations. In the case of observer design, a weighted $H_{\infty}$ error bound approach for a state estimator is considered. Based on an algebraic Riccati equation(inequality) approach, a necessary and sufficient condition for the existence of a full-order estimator which satisfies the weighted $H_{\infty}$ error bound is introduced. Where, the condition for existence of the estimator is denoted by a Linear Matrix Inequality(LMI) which gives an optimized solution and observer gain. Based on this result, we apply it to the tracking control system design for the transfer crane.

  • PDF

An Output Feedback $H_\infty$ Controller Design for Linear Systems with Commensurate Time Delay (커멘슈레이트 시간지연을 갖는 선형시스템의 출력궤환 $H_\infty$ 제어기 설계)

  • Yoo, Seog-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.37 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • This paper deals with an H$_{\infty}$ output feedback control problem for linear systems with commensurate time delay in both state and input variables. The proposed output feedback controller also has commensurate time delay terms in the controller state. The controller can be synthesized based on the solution of the linear matrix inequalities(LMI) which can be easily solved using the convex optimization method. In order to demonstrate the efficacy of the proposed method, numerical examples are presented.

  • PDF

A Robust Levitation Controller Design for Electromagnetic Levitation System

  • Kim, Choon-Kyung;Kim, Jong-Moon;Park, Min-Kook;Kwon, Soon-Man
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.37.6-37
    • /
    • 2001
  • In this paper, a robust levitation controller for an attractive MAGLVE system is designed. The design of an H$\infty$ controller based on LMI method is proposed for the control of a simple magnetic levitation system. Attractive MAGLEV system is highly nonlinear and open-loop unstable, and has a very restricted equilibrium region, Also, this system has to tolerate various disturbances caused by propulsion. Thus a robust feedback controller is needed to control the system efficiently. We first formulate a mathematical model for the single magnet levitation system. Then we set up an H$\infty$ control problem as a mixed sensitivity problem where the augmented plant is constructed with frequency weighting function ...

  • PDF

Robust Decoupling Control of Ship Propulsion System with CPP (CPP를 갖는 선박 추진 시스템의 강인한 Decoupling 제어)

  • 김영복;변정환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.9
    • /
    • pp.33-42
    • /
    • 1998
  • If a ship diesel engine is operated by consolidated control with Controllable Pitch Propeller(CPP), the minimum fuel consumption is achieved together with the demanded ship speed. For this, it is necessary that the ship is operated on the ideal operating line which satisfies the minimum fuel consumption and that the pitch angle of CPP and throtle valve angle are controlled simultaneously. In this point of view, this paper presents a controller design method for a ship propulsion system with CPP based on the decoupling control theory. To do this, Linear Matrix Inequality(LMI) approach is introduced for the control system to satisfy the given $H_\infty$ control performance and robust stability in the presence of physical parameter perturbations. The validity and applicability of this approach are illustrated by simulation in the all operating ranges.

  • PDF

A Mixed H2/H State Feedback Controller Based on LMI Scheme for a Wheeled Inverted Pendulum running on the Inclined Road (경사면을 주행하는 차륜형 역진자를 위한 선형행렬부등식 기반 혼합 H2/H 상태피드백 제어기 설계)

  • Lee, Se-Han;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.617-623
    • /
    • 2010
  • In this research an LMI based mixed $H_2/H_{\infty}$ controller for a Wheeled Inverted Pendulum is designed and a numerical simulation of that is carried out. The Wheeled Inverted Pendulum is a kind of an inverted pendulum that has two equivalent points. To keep that the naturally unstable equivalent point, a controller should control the wheels persistently. Dynamic equations of the Wheeled Inverted Pendulum are derived with considering inclined road that is one of the representative road conditions. A Linear Matrix Inequality method is used to construct a controller that is able to stabilize the Wheeled Inverted Pendulum with considering the inclined road condition aggressively. Various numerical simulations show that the LMI based controller is doing well on not only flat road but also inclined road condition.

A Controller Design for an Induction Motor Using Fuzzy PI (Fuzzy PI를 이용한 유도전동기의 제어)

  • Park, Seong-Hun;Ko, Chang-Min;Lee, Hyun-Seok;Park, Seung-Kyu;Ahn, Ho-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1725_1726
    • /
    • 2009
  • The purpose for this paper is to obtain the ��$H_{\infty}$ LMI with fuzzy PI controller for induction motor which is nonlinear system. The controller type is PI and the control gains are obtained based on $H_{\infty}$ control problem. The PI controller is considered a part of a plant and the problem is changed to get controller with static gains. The nonlinear system is approximated as several linear systems and combined by using fuzzy technique.

  • PDF