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Abstract

This paper deals with an H. output feedback control problem for linear systems with '

commensurate time delay in both state and input variables. The proposed output feedback controller
also has commensurate time delay terms in the controller state. The controller can be synthesized
based on the solution of the linear matrix inequalities(LMI) which can be easily solved using the
convex optimization method. In order to demonstrate the efficacy of the proposed method, numerical

examples are presented.

I. Introduction

The stability analysis and control of linear
systems with delayed states are problems of
practical and theoretical interest since time delays
are frequently encountered in physical processes
and very often is the cause for instability and
poor performance of control systems. In the last
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decade, the H., controller design method for the

linear time delay systems has been developed
U1 1-7), state
feedback controller was used in order to stabilize
linear state delayed systems. L. Xie et al® has
designed a robust memoryless state fedback
controller based on the Lyapunov-Razumikhin
function approach. Their methods are dependent

remarkably a memoryless

on the size of the delay and are given in terms of
IMIs. Jeung et al® considered an H., output
feedback control problem for linear systems with
time varying delayed states. They synthesized the
output feedback controller by solving coupled
LMIs. Unfortunately, there is no general method
to solve coupled LMIs. By fixing coupled terms a
priori, coupled LMIs can be solved by using the



convex optimization method™”. Attention has been
also paid on the robust stabilization of linear

[15) In [15)

systems with multiple time delay
robust full state feedback controller is designed

using the convex optimization method. A system

a

with commensurate time delay is a class of a
system with multiple time delay. When all the
dy, dy,*,d,

time delays can be written as

di=kd , i=1,---,n, where k; is an integer and
d>0 is a real number, we say that this multiple
time delayed system 1S a system with

commensurate time delay. Hence any multiple time
delayed system can be approximated to a system
with commensurate time delay within arbitrary
accuracy. However, there are only a few
publications on the study of a system with
commensurate time delay“ﬁ]. In this paper, an H,

output feedback controller is proposed for linear
systems with commensurate time delay. The
proposed controller stabilizes the linear time delay
systems and attenuates the disturbance attenuation
level below the prescribed level. The proposed
also
commensurate time delay and is synthesized by

controller is a linear system with

solving an LMI problem. Since the controller has
it
implement the proposed controller

IS expensive to
in the real
control system. But we will show that better

delayed controller states,

performance can be expected when the proposed
irrational controller is used.

We use fairly standard notation. The symbol
R(C) denotes the field of real(complex) numbers.
R"(C") denotes the # dimensional real(complex)
vector space and R™™(C™"™) denotes the set of
all #xm real(complex) matrices. We will use A7
and A" to denote the transpose and the conjugate
transpose of matrix A respectively. A™ denotes
an orthogonal complements of A. In a block
symmetric matrix, * in the (7,7) block denotes
the transpose of the submatrix in the (j,7) block.
I and 0 denote the identity matrix and the zero
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matrix respectively. o(A) denotes the maximum
singular value of matrix A. When A=C™"™, Ap
and A; denote the real part and the imaginary

part of the matrix A respectively.

IO. Problem Statement

We consider” the following linear system with

commensurate time delay.

2(H= Ax(D+ g;Ai (£ id) + Byu( D)

+ Bzou( t) + g le'u(t_ Z’d) (l)

2(D= Cx(D+ Dy w(d)+ Dypuld

W= Coux(H+ Dyl
where x(HeR” is the state, w(HeR™ is the
disturbance input, «()eR™ is the control input,
z2(HeR™ is the error signal, WHeR™ is the
id>0, (i=1,-,N) are
delays in the system. In addition, A,A; --,Dy

measured variable and

are constant matrices with appropriate dimensions.
We want to design a strictly proper output
feedback controller in the form of

5= AgiD+ 2 Awnt— id)+ B
u(d= Crd)

@

where x,€R" is the controller state whose
dimension is same as that of the plant state. Note
that the output feedback controller (2) is also a
linear system with commensurate time delay.

When the controller (2) is applied to the delayed
system (1), the resulting closed loop system can

be written as follows.

()= AxdD+ [Aq x(t—id T Bald) (3

z= Cx D+ D w(d

where

ofz) 2]

A; B,C B
Ad: i 2%k ) Bcz 1 )
(540 2= mm)

A ByCy
B.C, A, [’
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C.=[C, DpCl, D.=Dy

Note that our method can not be applicable to a
controller design for systems with time varying
delay.

Our goal is to design the output feedback
controller (2) such that the closed loop system (3)
is internally asymptotically stable and || T, | <7

T.. is the transfer function from the

z(D

and 7 is the prescribed disturbance attenuation

where

disturbance input w(# to the error signal

level.

M. H. Norm Bound

In this section, we will develope a sufficient
condition guaranteeing | T, 1 <7 in the closed
loop system (3). First, we define a linear system
with complex uncertain parameters associated with
the linear time delay system (3).

2= Ax(H+B.uw(d

2= Cax(t)+D.ul?) @

where A=A .+ ﬁ:\Ad z ' and z is a complex
&

uncertain parameter with | z| =1. One can easily
the
system (4) can be uniquely obtained from the

observe that linear parameter dependent
linear time delay system (3) and vice versa. We
begin with the discrete system version of strictly
positive real condition[11] which will be used
later.

Lemma 1 : The two statements are equivalent.

@ An stable function
H(2)= D¢+ Celzl—Ag) *Bg is strictly positive
real. Thus H(z) + H'(2)>0 for all |z] =1.

@ There exists an R=R7>0 such that LMI
(5) holds.

mxXm transfer

R—AIRA, CI-AZIRB;

>0
Co— BERA; Do+ DI— BERB;

&)

(proof) It was already shown that H(z) is strictly

(257)
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positive real if and only if there exist R,=RD0,
M=M">0, K and L such that (6)~(8) hold"*.

(©6)

(7N
8

R—AIRA:=QTQ+M
CG'— B(T;RIAG= WTQ
Do+ DE—BER\Be= W'W

(D=>®) Let H(2)=H(z)— % I. Obviously there

exists sufficiently small e>0 such that

H(2)+H.(2)>0 for all [|z|=1.
there exist R>0, M.>0, Q. and W, satifying

a

Accordingly

R—AlRA:= QIQ.+ M.,

Co— BERAG= W.Q., (9)
Do+ DE—el— BERBg= W!W,
From (9), we have
R—AIRA; CE—AZRB;
Co— BLRA Do+ D5~ BEIRB, (10)

=M. gl]+[§i§][@s w150

(@=>D) Since LMI (5) holds, there exists an
invertible U=[ U; U,] such that

R—AIRA; CI-ALRB;
Co— BERA; Do+ DE— BERB;
=yTy= ULU, U{U,

Uiu, USU,

(1D

After a little straightforward manipulation using
(11) and the identity (12)

R—AlRAc= (27'I-ADRA+ALR(ZI-A))  (19)
+(z - ADR(zI- A

we have
H(z)+ H'(2)= D¢+ DE+BI(z"'1-AD'CE
+ Cxlzl—Ag)'Bg
= UlU,+ BERBg+ BUz ' I-AD™!
(UTU,+ ALZRB)
+(UFU+ BERA ) 2I— Ag) 'Be
= T(2)T(2)

13)

where T(z)= U,+ U(zI— Ag) 'Bg.
[U1 Uz]

T(2)x can be written as

Llet x=C™. Since is invertible and
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T(x=[U, Uz][ (ZI—AG)ﬂBGx]

X

(14)

T(2)x=0 implies x=0 for all
P (HGE)+H @Nx=x"T(2)T(z)x>0 for all

nonzero xC”

| z| =1. Hence,

and |z!| =1. This completes
the proof.
We are ready to state a sufficient condition
guaranteeing | T, «<y in the closed loop
systemn (3).
Lemma 2 :The following two statements are
equivalent.
@D There exists a P=P*>0 such that LMI (15)
holds for all the complex number z satisfying

|z| =1.

A'P+PA, PB, Ci
L,= B.P —yl D |<0 (15
C. D, 71

(@ There exists P=P">0 and R=R">0 such
that LMI (16) holds.

L=[ ALRAG—R  ALRBo+ Ce (16)

<0
BiRAg+ Ce BiRBg+ Do+ D"G]

where

~ e

I
0
Ag= , Be=

0
0
I
0

(== oo
o O

i
0 eee

Co= [Cenv Con-1  Cal, Ccz:[ 0

A.P+PA, PB, C.
De=%| BP  —yI D
C. D, —7i

Moreover, if @ or equivalently @ holds, the
system (3) is internally
I Tl <.

(proof) The proof of asymptotic stability part

will be omitted. Using the definitions of A, LMI

closed loop

asymptotically stable and

(15) can be written as

L,= Dg+ D+ gcan’# 2:Wcz;,-z” an

do] 343 H.A07] A tingEte

NoDe that (AG,BG,CG,DG)
realization of an FIR filter transfer function

is a state space

D¢+ ,ﬁ CG:'WQ’{. Hence (17) becomes

L,= D¢+ Cilzl-Ag) 'Bg
+ D+ Bz 'I- AR TICh
<0

a8

Since LMI (18) holds for all the complex number

z with lz] =1, the discrete system

(Ag,Bg,— Ce,—Dg) is strictly positive real.
From the strictly positive real condition, we

conclude that @ is equivalent to @.

Define G(s,2)=D.+CsI-A,) 'B.. LML (16)
implies  sup |, =1 Sup, o(GGiw,2))<{y. Hence we
obtain

| Tooll o< sup |21 =1 sup o(Glw, 2))<7.

This completes the proof.

From the proof of Lemma 2, one can observe
that any P satisfying LMI (15) can be a solution
of LMI (16). Note that P and R in LMI (16) is
not necessarily restricted to being Hermitian. In
fact, Lemma 3 states that they can be replaced by
symmetric positive definite matrices.

Lemma 3 : Suppose that there exist the Hermitian
positive definite matrices P and R such that LMI

(16) holds. Then the real part of the matrices P
and R also satisfy LMI (16).

(proof) IMI (16

L=Lz+;iL<0 where

can be written as

Le= AlRRAG— Ry AZRpBc+ Cir ]
R

BLRRAG+ Cer BERgB+ D+ D
L,=[ AGRAc—R,  AGRBe—Ca ]
BIRAc+ Coy BERBo+ Do— D
Let: LeC** Since L<0 and L}=—Lj for any
nonzero x=xp+ixs (xeC*, xR»xIERk)v

x"Lx= (xF—jai N Lg+iL)(xp+ ity

— T LR L[ XR
[ xR x}][_LI LR][xI]<O

(19)

(258)
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From (19) we conclude that Lp+;L,<0 implies

Ly Ly
_LI LR

Lr<0. When P and Ry are used in LMI (16),

<{0. Accordingly Lg+7L, X0 implies

we have L= L This completes the proof.

Remark 1 : As a special case of Lemma 2, we
consider N=1 in the system (3). In this case,
A;=0, B=W, Cs=Cgq. Accordingly LMI (16)

is equivalent to

BIRB;+ Do+ DE+ CoR7ICI<0

& (20)
AIP+PA_+R PA, PB, CT
AZP —R 0 0 {
T T
B.P 0 —vI D;
C, 0 D, —7vl

LMI (20) is a well known H. norm bounding

condition for linear systems with delayed states.

IV. Output Feedback Controller

In this section, we derive an output feedback
controller (2) based on LMI (15).

Partition P and P! as

P=[A}’T ﬂ P“=[A);T 14] 1)

where M, N are nonsingular and * means
irrelevant. Then one can observe that XeR™”,
YER™" are symmefric positive matrices and
MNT=I-XY.

Define I, and I, as follows.

H1=[A;(Té], H2=[é]\¥r] (22)

LMI (15) can be written as

L= 3 L;z70 for all |zl =1 (23
where
AlpP+pA, PB, CT
Ly= B’p  —y1 DT,
C, D, —vI

F£37% SCR H4% 5

PA; 00
0 0 0], (i=1,-,N)
0 00

If we perform a congruence transformation with
diag(IT,, I, ) on both inequalities (23), we obtain

Liz LZ,Z

igNT,- 270 for al |z]=1. (24)

where

To= diag(IIT,I,1) Ly diag(I,, 1D 25)
* *

ATou *
_ | A+AT Ty * %
Bl BIY+DL B" —yI =
ClX+D126 C] Du - ?’I

Tyn= AX+XAT+ByC+ C'BS
Tow= ATY+ YA+BC,+Cl B

Ti= diag{II],I,]) L; diag(I1,,I,)=T7", %)

[AX+B,C A; 00
_ A; YA; 00| = (.
n 0 0 00|~ CaW
0 0 00
A,X+B2,C A,‘
. A, YA, (1000
Co 0 o "o 700
0 0
A= YAX+ YBy C:M™+ NB,C, X+ NAMT  (27)
C=cM" (29)
A= YA X+ YBy,,C+ NAMT (30)
Define
0710 0 0
00 1 -0 ,
AG= s s BG= 6 »
000 1
000 0

Ce= [Conv Con—r = Cal, Dg= Ty/2.

Then LMI (24) holds if and only if the discrete
system realization (Ag, Bg,— Cg,— Dg) is strictly
positive real. From the strictly positive realness
condition of (Ag,Bg,—Cq, —Dg), we can derive
a solvability condition of the H. output feedback

control problem. We state our main result in
Theorem 4. '



Aol 2 A 7FAd

Mo

Thorem 4 : Suppose that there exist X=X7>0,

—_—

Yy=Y7"0, R=R™»0, A B C and A4;
(=1, -, N) such that following LMIs hold.
T _ T T
©f AckAc—R  AcRBetCo ]¢g 31
X I
@[ AR (32)

Then there exists an output feedback controller
such that the closed loop system is internally
[ Towll <.

(proof) There exists P= PT>( satisfying (21) if
and only if LMI (32) holds"™"". Since LMI (31)
holds, LMI (24) holds for all the complex number

|zl =1. f A, B, C, and A, (i=1,-N
are chosen such that (27)-(30) are satisfied, the
| Toll w<7. This

asymptotically stable and

closed loop system achieves

completes the proof.
Consider the special case of N=1 and By =0

in the linear delay system (1). In [8], it was
proved that solvability of the matrix inequalities

(32)-(35) guarantees the existence of a rational

output feedback controller satistying | 7., w<7.
W00 [XAT+AX+A,SAT * * =
W00 C\X —yl *
001 X 0 0 -
W, 00
W00
0 100
001
W00 [ATY+YA+Q * =
W, 00 BlY —o x %
0 10 C Dy —7I * (34)
0 01 Aly 0 0 —@Q
W 00
W, 00
o 10[<0
001
SQ=1 (35)

where [ WY Wi 7 and [ WF W7 are orthogonal
(B3 DR]” [C, Dyl”

respectively. The matrix inequalities (32)-(35) are

complements of and

not LMIs since (35) is not linear. There is no
efficient method to obtain X, Y, S and @

2He) 29

(260)

=32

Az H A7) AA HigEtE
satisfying (32)-(35). When either S or Q is
fixed to a symmetric positive matrix, then
(32)-(35) become LMIs whose solution can be
effectively computed by using the existing LMI
solver. If S or @ is determined a priori in order
(32)-(35) solvability of
(32)-(35) becomes more conservative. But, if the

to solve efficiently,
irrational controller as expressed in (2) is to be
designed, the controller can be synthesized by
using solutions of LMIs (31) and (32). We will
show that solvability of (31) and (32) is less
conservative than solvability of (32)-(35). Consider

LMIs (32)-(34) with SQ=I which are apparently

less conservative than the matrix inequalities
(32)-(35).
Lemma 5 : Suppose that LMIs (32)-(34) with

SQ=1 are solvable. Then LMIs (31)-(32) are also
solvable.

(proof) When N=1 and By=0, ILMI (31
becomes

L1= _R Cg
Ce¢ BGRBot+Do+DGl (36)
= M1+U1[A Al] V1+(U1[A Al] VI)T
where
_Rl * * * * *
~RY — Ry * * *
M, AX A Ttk * * *
! 0 YA, A'+R]  Twm+R, * *
o o B Bly+pfB" T,
7.
0 0 CX+DpC o
r=[R B yI=[000 100,
Ry, Ry
_f0017100 0]
Vi [1 00000

Possible Ui and V,T* are given by

sy

cCooOoOND
CoOMOOD
oMo OoOOoO
O DO O

It is well known that solvability of L;<0 is
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equivalent to solvability of U 'M,Ui<0 and -R * * %
M, = 0 —R; =« *
VITL TM 1 VITJ- <0. VIT_L TM 1 VlTL can be expreSSed 4 0 0 - 7’1 * ’
0 0 Du — 71
as
I 0
VT VT = My + Uy BV, + (U, BYV) T (37 Uy=~— 8 vi= é
0 0
where UF=—[10000], Vs=[01700 0]
~ R x 10 0 )[R * *
M= | YA ATY+YA+R, x o« 0700 |0 —R .
2 0 BlTY —yI * ’ Ms—— 00 W 0 A1X Al AX+ XA +R,
0 0 00 W0 0 0 X
I e * * I0 00
Uz—osz—Djr x o700
0 01 * * [|100 MO
-yl * |00 0 [
Accordingly, we have Dy =71100 W 0
R, * * Hence solvability of (40) is equivalent to
Ui "M Uz = [ 0 —od * (38) solvability of LMIs (43)-(46).
0 Du -7l
70 07[ "R * ip g [T R
VI Tyt~ |0 W 0| | YA, ATY+ YA+R, Ur'™MUy=| 0 —oI = (43)
2 2V2 0 W 0 0 BITY 39 0 Dy, —7l
00 I 0 C
x = q[100 C[=R x x
x o+ {10 W0 ViVt = 0 =l * (44)
—yI * |0 WO 0 Dy —7I
Dy —y0i0 0 I
Ut ot be al itt A "
can be also written as n L_ (0 MO A AX+XA'+R
P UMUE= 1o g g |y B 4D
0 WO
U "M U = My + UsCV3+ (U3 CVy) T (40) MR - 00 o
* * 0 WMo
—yl * |0 0 I
where Dy =710 W0
_1?1 % * * I00 T ——Rl * r
1_ |0 M O X AX+ XA +R
_RzT ~-R, * , * Vit T v = 0 01 I (1) B ! (46)
M= |AX A AX+XA'+R, = * 0 W 0 0 C.X
0 0 Bf —yl * x  x 100
0 0 CX Dy —7l * ox |10 W0
c 0 0 —yl * 00 1
0 0 Du —7I||0 VVZ 0
Us= |By|, Vi=|I
0 0 Accordingly we can conclude that solvability of
Dy, 0 LMI (31) is equivalent to solvability of LMIs (38),

Solvability of LMI (40) is equivalent to solvability
of (41) and (42).

(41)
(42)

VgTJ_TM‘g 1/37‘J~ = M4+ U4R2 V4 + ( U4R2 V4) T
Us" "MyUs*" = M5+ UsR, Vs + (Us Ry Vi) T

where
(261)

(39), (43)-(46). Let X>0, Y>0, S>0, @0 be
solutions of IMIs (32)-(34) with S@Q=I Then it

is easy to check that X, Y, Ry=@ and

R,=XS7'X also satisfy LMIs (38), (39), (43)-

(46). This completes the proof.
Examplel : We consider the linear state delayed
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system (1) with

A=[ 5 ) = 2a=[1):

w=[8 1 elh ) o)

Clz[é 8] Dy [8 8] D12=[(1)],

sz[l 0], D21=[0 ].]

When the prescribed disturbance attenuation level
y=1.5,

x=[ 1.0555 —0.9428 Y=[1.5067 0.3222
—0.9428 3.3464 |’ 0.3222 0.6242]"

Az[—1.7462 3.6884 =[—0.9031]
—1.1752 0.8779) 0.1818 |’

T_[—0.0878] 4 _[ 0.0226 —0.0443

¢=[Ths ) =] 2o’iss 0058 )"

@z[—o.mso 0.0552

21 0.0027 —0.0104)

are possible solutions of LMIs (31) and (32). From
(27)-(30),
controller can be obtained as follows :

the state space realization of the

_[—4.5278 0.2998 _[—0.9031
A [—3.5198 ~2.5332]’ B ['0.1818 ’
r_[1.8828 _[—0.1254 —0.5033
Ci [1.8188]’ An [0.0258 0.0655 J’

—[ 0.0635 0.4624

Ae=| "5 0162 —0.1225] :

When d=l[sec], Figure 1 shows the singular
value of the closed loop system at some frequency

band. Since | T,,l «<1.5 the controller robustly

stabilizes
x(HD= (A+ B, AC1)x(t) + Ax(t—d)

+ Apx(t—2d) + (By+ BiADp)ul )
y(t) = (Cz + DZIACI)X( t) + DZIADlzu( t)

47

4 with [4]<1/1.5. When the

0.6
0

for any

0

parametric uncertainties A=[ —0.6

] and the

initial  condition x(t)=[_11], te[—-2, 0] are

considered, the time domain state response is
depicted in Figure 2.

Ze APALFY 2H4F HoA7] AA

(262)

GBS

Fig. 1. Singular value of T, .

Example 2 : Suppose that A,=0 in example
1. We choose @ to be the identity matrix.
Then the matrix inequalities (32)-(34) become
LMIs. By (32)-(34)

observe minimum

solving LMlIs
that the

disturbance attenua- tuation level

we can
achievable
Y ra~2.4163.

On the other hand, if the controller is allowed
to be irrational we can obtain the minimum
attenuation level

achievable disturbance

Yima®1.1338 by solving LMIs (31) and (32).
Since  7iya 7. We observe that the irrational
controller will give better performance or better
robustness property than the rational controller.
When the delay time d is time varying, it is
hard to realize the controller in the form of (3).
But we guess that the irrational controller will
also give better performance than the rational
controller. We leave development of the design
method for the time varying delay case to one

of the future research topics.

15

1

05

0

05

-

15

2 .

0 5 10 15

25

Fig. 2. Time Domain State Response.
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V. Concluding Remark

In this paper, we have synthesized an He
output feedback controller for linear systems with
commensurate time delay. In order to develope the
controller design method, an H, norm bounding
condition for the closed loop system has been
suggested. The H, norm bounding condition has
been derived from the strictly positive real lemma
and the
parameter dependent system. Using the H. norm

bounded real lemma for a complex

bounding condition, the existence condition of the
output feedback controller has been suggested.
The controller parameter can be determined from
solutions of two LMIs. The resulting controller is
also a linear system with commensurate time
delay. We also have shown that the irrational
controller will give better performance than the

rational controller.
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