• Title/Summary/Keyword: LED Package

Search Result 170, Processing Time 0.033 seconds

A Study on Optical Losses for Tubular LED Lamp's Components (직관형 LED램프의 구성부품별 광손실에 관한 연구)

  • Jeong, Hee-Suk;Park, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.1-8
    • /
    • 2011
  • The high efficiency tubular LED lamp has been developed. But, it occurs optical losses in consists of LED package, module, diffuser etc.. By Measuring the tubular LED lamp's luminous flux, we compared and analyzed about the effect of optical losses for each component and actually using measured luminous intensity distribution data, illuminance distribution was simulated by Relux. Optical losses are 24[%] from LED package to luminaire and the tubular LED lamp can be replaced with fluorescent lamp. In this paper, we could provide data for optimum lighting design by analyzing the optical characteristics for developing and propagating the tubular LED lamp.

Problems and Solutions for Ultra-compact LED Package Development (극소형 LED 패키지 개발의 문제점과 해결 방안)

  • Lee, Jong Chan
    • Journal of Industrial Convergence
    • /
    • v.17 no.4
    • /
    • pp.9-14
    • /
    • 2019
  • This paper presents several problems that can occur in the development of the ultra-compact LED package of less than 1.0mm and introduces the solution to them. In the existing mold structure, since the upper and lower core parts are integrated, various errors have occurred due to the roughness of EDM in the small model, which is a limiting factor in further reducing the mold size. As a countermeasure, the prefabricated model was presented in an earlier study to overcome the obstacles to the development of a ultra-compact LED package. In this paper, several problems have been found during the fabrication of prototypes as a starting work to produce the results for the presented model. The types are suggested and the solutions are discussed. And by changing the existing 2-row structure to 3-row structure in the same size lead frame, the aspect of efficient production is considered. The experimental procedure verifies the proposed solution and conducts a test to produce a prototype to confirm that a good product can be produced.

Thermal Transient Characteristics of Die Attach in High Power LED Package

  • Kim Hyun-Ho;Choi Sang-Hyun;Shin Sang-Hyun;Lee Young-Gi;Choi Seok-Moon;Oh Yong-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.4 s.37
    • /
    • pp.331-338
    • /
    • 2005
  • The rapid advances in high power light sources and arrays as encountered in incandescent lamps have induced dramatic increases in die heat flux and power consumption at all levels of high power LED packaging. The lifetime of such devices and device arrays is determined by their temperature and thermal transients controlled by the powering and cooling, because they are usually operated under rough environmental conditions. The reliability of packaged electronics strongly depends on the die attach quality, because any void or a small delamination may cause instant temperature increase in the die, leading sooner or later to failure in the operation. Die attach materials have a key role in the thermal management of high power LED packages by providing the low thermal resistance between the heat generating LED chips and the heat dissipating heat slug. In this paper, thermal transient characteristics of die attach in high power LED package have been studied based on the thermal transient analysis using the evaluation of the structure function of the heat flow path. With high power LED packages fabricated by die attach materials such as Ag paste, solder paste and Au/Sn eutectic bonding, we have demonstrated characteristics such as cross-section analysis, shear test and visual inspection after shear test of die attach and how to detect die attach failures and to measure thermal resistance values of die attach in high power LED package. From the structure function oi the thermal transient characteristics, we could know the result that die attach quality of Au/Sn eutectic bonding presented the thermal resistance of about 3.5K/W. It was much better than those of Ag paste and solder paste presented the thermal resistance of about 11.5${\~}$14.2K/W and 4.4${\~}$4.6K/W, respectively.

  • PDF

Analysis of Thermal Properties in LED Package by Via hole of FR4 PCB (FR4 PCB의 Via-hole이 LED 패키지에 미치는 열적 특성 분석)

  • Lee, Se-Il;Lee, Seung-Min;Park, Dae-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.57-63
    • /
    • 2010
  • The efficiency of LED package is increasing by applying the high power, and a existing lighting is changing as the LED lighting. However, many problems have appeared by heat. Therefore, in order to solve thermal problems, LED lighting is designing in several ways, but the advantages of LED lighting is fading due to increase the prices and volumes. In this study, we try to improve the thermal performance by formation of via holes. The junction temperature and thermal resistance in the FR4-PCB with via-holes of 0.6[mm] was excellent in experiment and FR4-PCB with Via-holes of 0.6[mm] was excellent in simulation without solder. Further, the thermal resistance and the optical properties can be improved through a formation of via-holes.

A Novel Lens Design for Slim, Large Size, Direct Type LED Backlight Module

  • Li, Tzung-Yang;Lin, Tzu-Pin;Chou, Ming-Der;Tsou, Chien-Lung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.72-75
    • /
    • 2009
  • In this paper, we have designed a novel lens for LED's package that can expend the radiation angle of LED from $120^{\circ}$ to $170^{\circ}$ successfully. At the same brightness and uniformity condition of 37" LED BLU system, using novel lens LED package can be reduced amounts of LED 40% or thickness of BLU 30% respectively. Besides, the power consumption of BLU also can be reduced 25%.

  • PDF

Disassembly of the Package/PCB on Wasted LED Light and their Characterizations (LED 조명 모듈에 장착된 패키지/PCB의 분리 및 특성)

  • Seunghyun Kim;Ha Bich Trinh;Taehun Son;Jaeryeong Lee
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.3-9
    • /
    • 2023
  • Separation of LED packages from PCBs and analysis of the adhesive components was conducted to enhance the recycling potential of LED modules. LED package was separated from PCBs using heat treatment under optimal conditions: temperature of above 250 ℃ and time of 20 minutes. The separation equipment can be established using a hot air injector with controlling the rotational speed of the internal screw. The separation efficiency of each type of substrate (aluminum and glass fiber) was investigated with the thickness range of the adhesive materials (0.25-0.30 and 0.30-0.35 mm). Under the optimal conditions, the efficiency can reach to 97.5% for both types of substrates with adhesive materials of thickness 0.25~0.30mm. Characterization of the residual adhesive substances from the separated LED package and PCB using microwave digestion and ICP analysis showed that the residue contained of 95% of Sn, less than 5% of Cu and Ag.

Implementation of Electrical and Optical characteristics based on new packaging in UV LED (UV LED의 광효율 및 방열성능 향상을 위한 new packaging 특성 연구)

  • Kim, Byoung Chol;Park, Byeong Seon;Kim, Hyeong-Jin;Kim, Yong-Kab
    • Smart Media Journal
    • /
    • v.11 no.9
    • /
    • pp.21-29
    • /
    • 2022
  • Ultra Violet(UV) is gradually being replaced with LED instead of general UV lamps. However, the light efficiency of UV LED is still lower than that of the general lamp, and the light efficiency is also low. Due to the current environment and technical problems of UV lamps, the LED replacements are gradually being made. In this study, a new package design and analysis were performed to increase the lifetime and performance of UV LEDs. A new packaging for UV LED were designed and implemented. The new packaging for UV LED was constructed to improve light efficiency. And the electrical and optical characteristics were analyzed respectively. To improve the optical efficiency in UV LED package, the Al has been used based on high reflectivity and applying the optimal lens focusing. Compared to the existing silver Ag, the light efficiency was improved by about 30% or more, and it was confirmed that the light output degradation characteristic was improved by about 10% in the newly applied optical device chip.

COB, COH Package LED Module Thermal Analysis Simulation (COB, COH Package LED Module 열 해석 시뮬레이션)

  • Choi, Keum-Yeon;Eo, Ik-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5117-5122
    • /
    • 2011
  • In this paper, thermal analysis simulation program by taking advantage of COMSOL Multiphysics, LED Module for the production of the most preferred package type, omitting the COH Type COB Type and board simulation of the thermal analysis is in progress. LED Module that passes through the Heat-sink of the simulation results, depending on the location of the COB Type Max. Approximately $78^{\circ}C$ ~ Min. Approximately $62^{\circ}C$, COH Type the Max. Approximately $88^{\circ}C$ ~ Min. Approximately $67^{\circ}C$ has been confirmed that the temperature stability. Compared with COB Type Max. AIthough temperature difference is about $10^{\circ}C$, Min. At a temperature of about $5^{\circ}C$ confirmed to be enough to reduce the gap, LED Point confirming the results of the temperature curves for COB Type Max. Approximately $100^{\circ}C$ ~ Min. Approximately $77^{\circ}C$, COH Type the Max. Approximately $100^{\circ}C$ ~ Min. Approximately $86^{\circ}C$ temperature stability was confirmed that, COB Type COH Type, compared to approximately $10^{\circ}C$ temperature was higher.