The objective of this study is to induce the design drought rainfall by the methodology of L-moment including testing homogeneity, independence and outlier of the data of annual minimum monthly rainfall in 57 rainfall stations in Korea in terms of consecutive duration for 1, 2, 4, 6, 9 and 12 months. To select appropriate distribution of the data for annual minimum monthy rainfall by rainfall station, the distribution of generalized extreme value (GEV), generalized logistic (GLO) as well as that of generalized pareto (GPA) are applied and the appropriateness of the applied GEV, GLO, and GPA distribution is judged by L-moment ratio diagram and Kolmogorov-Smirnov (K-S) test. As for the annual minimum monthly rainfall measured by rainfall station and that stimulated by Monte Carlo techniques, the parameters of the appropriately selected GEV and GPA distributions are calculated by the methodology of L-moment and the design drought rainfall is induced. Through the comparative analysis of design drought rainfall induced by GEV and GPA distribution by rainfall station, the optimal design drought rainfall by rainfall station is provided.
본 연구에서는 L-moment ratio diagram 기법과 지형정보시스템(GIS)을 동시에 활용하여 우리나라의 지속기간별 연 최대강우량의 최적확률밀도함수를 판별하는 새로운 기법을 제안하고, 결과 도출과정에 있어 발견된 연최대강우량의 통계값의 흥미로운 지형학적 특성을 살펴보았다. 이를 위하여 우리나라 기상청에서 운영하는 67개의 강우관측지점에서 관측된 강우자료의 연최대강우량을 1시간, 3시간, 6시간, 12시간, 24시간 누적시간에 대하여 산출하고, L-moment ratio diagram 기법을 활용하여 이들에 대한 최적확률밀도함수를 구한 후, 이를 관측지점에 해당하는 티센 다각형에 다른 색상으로 표현하여 그 공간적 분포를 살펴보았다. 또한, 각 후보 확률밀도함수의 적합도에 대한 지도를 작성하였다. 본 연구의 결과를 요약하면 다음과 같다: (1) 강우의 극한값의 특성을 대표할 수 있는 통계값인 L-skewness와 L-kurtosis는 뚜렷한 공간적 경향을 띠고 있다. 특히 산맥을 포함한 우리나라의 지형적 특성에 큰 영향을 받았다. 이는 발생빈도가 높고 강도가 낮은 평상시의 강우사상뿐 만 아니라, 연최대강우량 또한 지형의 영향을 크게 받는다는 것을 의미한다; (2) 우리나라의 산악지역에서는 연최대강우량의 통계적 특성에 대한 고도의 영향이 비산악지역보다 더 크며, 고도가 높은 지역일수록 발생 빈도가 낮고 강도가 강한 강우사상이 더 자주 발생하며, 강우의 누적기간이 증가할수록 이러한 경향은 작아졌다; (3) 우리나라의 연최대강우량을 가장 잘 대변할 수 있는 확률밀도함수는 Generalized Extreme Value (GEV) 분포와 Generalized Logistic (GLO) 분포이다. 단, 남해안의 중앙지역에 대해서는 Generalized Pareto (GPA) 분포가 가장 적합한 것으로 나타났다.
This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study. GEV distribution for the flood flow data of the applied watersheds was confirmed as the best one among others by the LH-moments ratio diagram and Kolmogorov-Smirnov test. Best fitting order of LH-moments will be derived by the confidence analysis of estimated design flood in the second report of this study.
수문통계분야에서는 극치 사상을 해석하기 위해 generalized extreme value (GEV), generalized logistic (GLO), Gumbel (GUM) 모형과 같은 다양한 극치분포들을 사용하여 왔다. 특히 우리나라 강우 사상의 경우 다양한 극치분포 모형 중 GEV 분포와 Gumbel 분포가 비교적 적합한 것으로 알려져 있지만 하나의 형상매개변수를 가지고 있어 각 분포 모형이 나타낼 수 있는 통계적 특성에 한계를 가지고 있다. 이러한 점에서 두 개의 형상매개변수를 가지고 있어 분포 모형이 나타낼 수 있는 통계적 특성의 범위가 넓은 분포의 적용이 필요하다. 이에 본 연구에서는 두 개의 형상매개변수를 가지고 있어 다양한 통계적 특성을 표현할 수 있는 Burr XII 분포와 우리나라 620개 지점의 강우자료의 무차원 L-moment 비를 이용하여 우리나라 강우자료의 수문학적 적용성을 검토하였다. 이를 위해 Burr XII 분포의 L-moment ratio인 L-skewness와 L-kurtosis를 유도하고 그 관계식을 이용하여 L-moment diagram을 작성하고 620개 지점이 해당 영역에 포함되는 정도를 검토하여 그 적용성을 살펴보았다. 그 결과 L-skewness가 L-kurtosis보다 상대적으로 큰 한강 유역에 해당하는 지점들에 대한 Burr XII 분포의 적용성이 우수한 것으로 나타났으며, 이는 일반적으로 많이 사용되는 GEV 또는 Gumbel 분포를 대체할 수 있는 분포가 될 가능성을 보였다고 할 수 있다.
This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall in 38 Korean rainfall stations. To select the fit appropriate distribution of annual maximum daily rainfall data according to rainfall stations, applied were Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) probability distributions were applied. and their aptness was judged Dusing an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, the aptitude was judged of applied distributions such as GEV, GLO and GPA. The GEV and GLO distributions were selected as the appropriate distributions. Their parameters were estimated Targetingfrom the observed and simulated annual maximum daily rainfalls and using Monte Carlo techniques, the parameters of GEV and GLO selected as suitable distributions were estimated and. dDesign rainfallss were then derived, using the L-moment. Appropriate design rainfalls were suggested by doing a comparative analysis of design rainfall from the GEV and GLO distributions according to rainfall stations.
This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.
This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.
This study was conducted to estimate the design flood by the determination of best fitting order of LH-moments of the annual maximum series at six and nine watersheds in Korea and Australia, respectively. Adequacy for flood flow data was confirmed by the tests of independence, homogeneity, and outliers. Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Pareto (GPA), and Generalized Logistic (GLO) distributions were applied to get the best fitting frequency distribution for flood flow data. Theoretical bases of L, L1, L2, L3 and L4-moments were derived to estimate the parameters of 4 distributions. L, L1, L2, L3 and L4-moment ratio diagrams (LH-moments ratio diagram) were developed in this study.
This study presents a bivariate extension of the goodness-of-fit measure for regional frequency distributions developed by Hosking and Wallis [1993] for use with the method of L-moments. Utilising the approximate joint normal distribution of the regional L-skewness and L-kurtosis, a graphical representation of the confidence region on the L-moment diagram can be constructed as an ellipsoid. Candidate distributions can then be accepted where the corresponding the oretical relationship between the L-skewness and L-kurtosis intersects the confidence region, and the chosen distribution would be the one that minimises the Mahalanobis distance measure. Based on a set of Monte Carlo simulations it is demonstrated that the new bivariate measure generally selects the true population distribution more frequently than the original method. An R-code implementation of the method is available for download free-of-charge from the GitHub code depository and will be demonstrated on a case study of annual maximum series of peak flow data from a homogeneous region in Italy.
This study was conducted to derive optimal design floods by Generalized Extreme Value (GEV) distribution for the annual maximum series at ten watersheds along Han, Nagdong, Geum, Yeongsan and Seomjin river systems. Adequacy for the analysis of flood data used in this study was established by the tests of Independence, Homogeneity, detection of Outliers. L-coefficient of variation, L-skewness and L-kurtosis were calculated by L-moment ratio respectively. Parameters were estimated by the Methods of Moments and L-Moments. Design floods obtained by Methods of Moments and L-Moments using different methods for plotting positions in GEV distribution were compared by the Relative Mean Errors(RME) and Relative Absolute Errors(RAE). The results were analyzed and summarized as follows. 1. Adequacy for the analysis of flood data was acknowledged by the tests of Independence, Homogeneity and detection of Outliers. 2. GEV distribution used in this study was found to be more suitable one than Pearson type 3 distribution by the goodness of fit test using Kolmogorov-Smirnov test and L-Moment ratios diagram in the applied watersheds. 3. Parameters for GEV distribution were estimated using Methods of Moments and L-Moments. 4. Design floods were calculated by Methods of Moments and L-Moments in GEV distribution. 5. It was found that design floods derived by the method of L-Moments using Weibull plotting position formula in GEV distribution are much closer to those of the observed data in comparison with those obtained by method of moments using different formulas for plotting positions from the viewpoint of Relative Mean Errors and Relative Absolute Errors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.